IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v595y2021i7865d10.1038_s41586-021-03652-7.html
   My bibliography  Save this article

Geometry of abstract learned knowledge in the hippocampus

Author

Listed:
  • Edward H. Nieh

    (Princeton University)

  • Manuel Schottdorf

    (Princeton University)

  • Nicolas W. Freeman

    (Princeton University)

  • Ryan J. Low

    (Princeton University)

  • Sam Lewallen

    (Princeton University)

  • Sue Ann Koay

    (Princeton University)

  • Lucas Pinto

    (Princeton University
    Northwestern University)

  • Jeffrey L. Gauthier

    (Princeton University)

  • Carlos D. Brody

    (Princeton University
    Princeton University
    Princeton University)

  • David W. Tank

    (Princeton University
    Princeton University
    Princeton University)

Abstract

Hippocampal neurons encode physical variables1–7 such as space1 or auditory frequency6 in cognitive maps8. In addition, functional magnetic resonance imaging studies in humans have shown that the hippocampus can also encode more abstract, learned variables9–11. However, their integration into existing neural representations of physical variables12,13 is unknown. Here, using two-photon calcium imaging, we show that individual neurons in the dorsal hippocampus jointly encode accumulated evidence with spatial position in mice performing a decision-making task in virtual reality14–16. Nonlinear dimensionality reduction13 showed that population activity was well-described by approximately four to six latent variables, which suggests that neural activity is constrained to a low-dimensional manifold. Within this low-dimensional space, both physical and abstract variables were jointly mapped in an orderly manner, creating a geometric representation that we show is similar across mice. The existence of conjoined cognitive maps suggests that the hippocampus performs a general computation—the creation of task-specific low-dimensional manifolds that contain a geometric representation of learned knowledge.

Suggested Citation

  • Edward H. Nieh & Manuel Schottdorf & Nicolas W. Freeman & Ryan J. Low & Sam Lewallen & Sue Ann Koay & Lucas Pinto & Jeffrey L. Gauthier & Carlos D. Brody & David W. Tank, 2021. "Geometry of abstract learned knowledge in the hippocampus," Nature, Nature, vol. 595(7865), pages 80-84, July.
  • Handle: RePEc:nat:nature:v:595:y:2021:i:7865:d:10.1038_s41586-021-03652-7
    DOI: 10.1038/s41586-021-03652-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03652-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03652-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Terra A. Schall & King-Lun Li & Xiguang Qi & Brian T. Lee & William J. Wright & Erin E. Alpaugh & Rachel J. Zhao & Jianwei Liu & Qize Li & Bo Zeng & Lirong Wang & Yanhua H. Huang & Oliver M. Schlüter , 2024. "Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Yi-Fan Zeng & Ke-Xin Yang & Yilong Cui & Xiao-Na Zhu & Rui Li & Hanqing Zhang & Dong Chuan Wu & Raymond C. Stevens & Ji Hu & Ning Zhou, 2024. "Conjunctive encoding of exploratory intentions and spatial information in the hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Ian Cone & Claudia Clopath, 2024. "Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Huixin Lin & Jingfeng Zhou, 2024. "Hippocampal and orbitofrontal neurons contribute to complementary aspects of associative structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Valeria Fascianelli & Aldo Battista & Fabio Stefanini & Satoshi Tsujimoto & Aldo Genovesio & Stefano Fusi, 2024. "Neural representational geometries reflect behavioral differences in monkeys and recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Eleanor Spens & Neil Burgess, 2024. "A generative model of memory construction and consolidation," Nature Human Behaviour, Nature, vol. 8(3), pages 526-543, March.
    8. Eunji Kong & Kyu-Hee Lee & Jongrok Do & Pilhan Kim & Doyun Lee, 2023. "Dynamic and stable hippocampal representations of social identity and reward expectation support associative social memory in male mice," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Changyuan Yang & Sai Ma & Qinkai Han, 2023. "Unified discriminant manifold learning for rotating machinery fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3483-3494, December.
    10. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:595:y:2021:i:7865:d:10.1038_s41586-021-03652-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.