IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44723-3.html
   My bibliography  Save this article

Neuromorphic hardware for somatosensory neuroprostheses

Author

Listed:
  • Elisa Donati

    (University of Zurich and ETH Zurich)

  • Giacomo Valle

    (University of Chicago)

Abstract

In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies.

Suggested Citation

  • Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44723-3
    DOI: 10.1038/s41467-024-44723-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44723-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44723-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leigh R. Hochberg & Daniel Bacher & Beata Jarosiewicz & Nicolas Y. Masse & John D. Simeral & Joern Vogel & Sami Haddadin & Jie Liu & Sydney S. Cash & Patrick van der Smagt & John P. Donoghue, 2012. "Reach and grasp by people with tetraplegia using a neurally controlled robotic arm," Nature, Nature, vol. 485(7398), pages 372-375, May.
    2. Natalya D. Shelchkova & John E. Downey & Charles M. Greenspon & Elizaveta V. Okorokova & Anton R. Sobinov & Ceci Verbaarschot & Qinpu He & Caleb Sponheim & Ariana F. Tortolani & Dalton D. Moore & Matt, 2023. "Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sean L. Metzger & Kaylo T. Littlejohn & Alexander B. Silva & David A. Moses & Margaret P. Seaton & Ran Wang & Maximilian E. Dougherty & Jessie R. Liu & Peter Wu & Michael A. Berger & Inga Zhuravleva &, 2023. "A high-performance neuroprosthesis for speech decoding and avatar control," Nature, Nature, vol. 620(7976), pages 1037-1046, August.
    4. L. F. Abbott & Wade G. Regehr, 2004. "Synaptic computation," Nature, Nature, vol. 431(7010), pages 796-803, October.
    5. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Martin Kaltenbrunner & Tsuyoshi Sekitani & Jonathan Reeder & Tomoyuki Yokota & Kazunori Kuribara & Takeyoshi Tokuhara & Michael Drack & Reinhard Schwödiauer & Ingrid Graz & Simona Bauer-Gogonea & Sieg, 2013. "An ultra-lightweight design for imperceptible plastic electronics," Nature, Nature, vol. 499(7459), pages 458-463, July.
    7. Diana E. Mitchell & Charles C. Della Santina & Kathleen E. Cullen, 2016. "Plasticity within non-cerebellar pathways rapidly shapes motor performance in vivo," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    8. Ranulfo Romo & Adrián Hernández & Anótonio Zainos & Emilio Salinas, 1998. "Somatosensory discrimination based on cortical microstimulation," Nature, Nature, vol. 392(6674), pages 387-390, March.
    9. Kamal Abu-Hassan & Joseph D. Taylor & Paul G. Morris & Elisa Donati & Zuner A. Bortolotto & Giacomo Indiveri & Julian F. R. Paton & Alain Nogaret, 2019. "Optimal solid state neurons," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    10. Fabien B. Wagner & Jean-Baptiste Mignardot & Camille G. Le Goff-Mignardot & Robin Demesmaeker & Salif Komi & Marco Capogrosso & Andreas Rowald & Ismael Seáñez & Miroslav Caban & Elvira Pirondini & Mol, 2018. "Targeted neurotechnology restores walking in humans with spinal cord injury," Nature, Nature, vol. 563(7729), pages 65-71, November.
    11. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Author Correction: Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Giacomo Valle & Natalija Katic Secerovic & Dominic Eggemann & Oleg Gorskii & Natalia Pavlova & Francesco M. Petrini & Paul Cvancara & Thomas Stieglitz & Pavel Musienko & Marko Bumbasirevic & Stanisa R, 2024. "Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Ashraf S. Gorgey & Robert Trainer & Tommy W. Sutor & Jacob A. Goldsmith & Ahmed Alazzam & Lance L. Goetz & Denise Lester & Timothy D. Lavis, 2023. "A case study of percutaneous epidural stimulation to enable motor control in two men after spinal cord injury," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. John Jinwook Kim & Kojima Shuji & Jiawei Zheng & Xinjun He & Ahmad Sajjad & Hong Zhang & Haibin Su & Wallace C. H. Choy, 2024. "Tri-system integration in metal-oxide nanocomposites via in-situ solution-processed method for ultrathin flexible transparent electrodes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    8. Baoguo Xu & Wenlong Li & Deping Liu & Kun Zhang & Minmin Miao & Guozheng Xu & Aiguo Song, 2022. "Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    9. Xiao-yu Sun & Bin Ye, 2023. "The functional differentiation of brain–computer interfaces (BCIs) and its ethical implications," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    10. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Zhou, Xinjia & Tian, Changhai & Zhang, Xiyun & Zheng, Muhua & Xu, Kesheng, 2022. "Short-term plasticity as a mechanism to regulate and retain multistability," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Eric A Pohlmeyer & Babak Mahmoudi & Shijia Geng & Noeline W Prins & Justin C Sanchez, 2014. "Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    13. Andrés Úbeda & Enrique Hortal & Eduardo Iáñez & Carlos Perez-Vidal & Jose M Azorín, 2015. "Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    14. Fuji Ren & Yanwei Bao, 2020. "A Review on Human-Computer Interaction and Intelligent Robots," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 5-47, February.
    15. Zhou, Xinjia & Zhang, Yan & Gu, Tianyi & Zheng, Muhua & Xu, Kesheng, 2024. "Mixed synaptic modulation and inhibitory plasticity perform complementary roles in metastable transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    16. Junhwan Choi & Changhyeon Lee & Chungryeol Lee & Hongkeun Park & Seung Min Lee & Chang-Hyun Kim & Hocheon Yoo & Sung Gap Im, 2022. "Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Javier M Antelis & Luis Montesano & Ander Ramos-Murguialday & Niels Birbaumer & Javier Minguez, 2013. "On the Usage of Linear Regression Models to Reconstruct Limb Kinematics from Low Frequency EEG Signals," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    19. Philipe R. F. Mendonça & Erica Tagliatti & Helen Langley & Dimitrios Kotzadimitriou & Criseida G. Zamora-Chimal & Yulia Timofeeva & Kirill E. Volynski, 2022. "Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44723-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.