Targeted neurotechnology restores walking in humans with spinal cord injury
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-018-0649-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kai Zhou & Wei Wei & Dan Yang & Hui Zhang & Wei Yang & Yunpeng Zhang & Yingnan Nie & Mingming Hao & Pengcheng Wang & Hang Ruan & Ting Zhang & Shouyan Wang & Yaobo Liu, 2024. "Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
- Kaya J. E. Matson & Daniel E. Russ & Claudia Kathe & Isabelle Hua & Dragan Maric & Yi Ding & Jonathan Krynitsky & Randall Pursley & Anupama Sathyamurthy & Jordan W. Squair & Boaz P. Levi & Gregoire Co, 2022. "Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Ashraf S. Gorgey & Robert Trainer & Tommy W. Sutor & Jacob A. Goldsmith & Ahmed Alazzam & Lance L. Goetz & Denise Lester & Timothy D. Lavis, 2023. "A case study of percutaneous epidural stimulation to enable motor control in two men after spinal cord injury," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Giacomo Valle & Natalija Katic Secerovic & Dominic Eggemann & Oleg Gorskii & Natalia Pavlova & Francesco M. Petrini & Paul Cvancara & Thomas Stieglitz & Pavel Musienko & Marko Bumbasirevic & Stanisa R, 2024. "Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
More about this item
Keywords
Overground Walking; Spatial Selectivity; Severe Locomotor Deficits; Posterior Root; Motoneuron Pool;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:563:y:2018:i:7729:d:10.1038_s41586-018-0649-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.