IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48908-8.html
   My bibliography  Save this article

Memristor-based adaptive neuromorphic perception in unstructured environments

Author

Listed:
  • Shengbo Wang

    (Beihang University)

  • Shuo Gao

    (Beihang University)

  • Chenyu Tang

    (University of Cambridge)

  • Edoardo Occhipinti

    (Imperial College London)

  • Cong Li

    (Beihang University)

  • Shurui Wang

    (Beihang University)

  • Jiaqi Wang

    (Beihang University)

  • Hubin Zhao

    (Division of Surgery and Interventional Science, UCL)

  • Guohua Hu

    (The Chinese University of Hong Kong, Shatin, N. T.)

  • Arokia Nathan

    (University of Cambridge
    Shandong University)

  • Ravinder Dahiya

    (Northeastern University)

  • Luigi Giuseppe Occhipinti

    (University of Cambridge)

Abstract

Efficient operation of control systems in robotics or autonomous driving targeting real-world navigation scenarios requires perception methods that allow them to understand and adapt to unstructured environments with good accuracy, adaptation, and generality, similar to humans. To address this need, we present a memristor-based differential neuromorphic computing, perceptual signal processing, and online adaptation method providing neuromorphic style adaptation to external sensory stimuli. The adaptation ability and generality of this method are confirmed in two application scenarios: object grasping and autonomous driving. In the former, a robot hand realizes safe and stable grasping through fast ( ~ 1 ms) adaptation based on the tactile object features with a single memristor. In the latter, decision-making information of 10 unstructured environments in autonomous driving is extracted with an accuracy of 94% with a 40×25 memristor array. By mimicking human low-level perception mechanisms, the electronic neuromorphic circuit-based method achieves real-time adaptation and high-level reactions to unstructured environments.

Suggested Citation

  • Shengbo Wang & Shuo Gao & Chenyu Tang & Edoardo Occhipinti & Cong Li & Shurui Wang & Jiaqi Wang & Hubin Zhao & Guohua Hu & Arokia Nathan & Ravinder Dahiya & Luigi Giuseppe Occhipinti, 2024. "Memristor-based adaptive neuromorphic perception in unstructured environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48908-8
    DOI: 10.1038/s41467-024-48908-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48908-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48908-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Josefina Mármol & Mackenzie A. Yedlin & Vanessa Ruta, 2021. "The structural basis of odorant recognition in insect olfactory receptors," Nature, Nature, vol. 597(7874), pages 126-131, September.
    3. Joel A. Butterwick & Josefina Mármol & Kelly H. Kim & Martha A. Kahlson & Jackson A. Rogow & Thomas Walz & Vanessa Ruta, 2018. "Cryo-EM structure of the insect olfactory receptor Orco," Nature, Nature, vol. 560(7719), pages 447-452, August.
    4. David Julius & Allan I. Basbaum, 2001. "Molecular mechanisms of nociception," Nature, Nature, vol. 413(6852), pages 203-210, September.
    5. Chao Ma & Zhen Luo & Weichuan Huang & Letian Zhao & Qiaoling Chen & Yue Lin & Xiang Liu & Zhiwei Chen & Chuanchuan Liu & Haoyang Sun & Xi Jin & Yuewei Yin & Xiaoguang Li, 2020. "Sub-nanosecond memristor based on ferroelectric tunnel junction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Author Correction: Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    7. Rui Yuan & Pek Jun Tiw & Lei Cai & Zhiyu Yang & Chang Liu & Teng Zhang & Chen Ge & Ru Huang & Yuchao Yang, 2023. "A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Rohit Abraham John & Naveen Tiwari & Muhammad Iszaki Bin Patdillah & Mohit Rameshchandra Kulkarni & Nidhi Tiwari & Joydeep Basu & Sumon Kumar Bose & Ankit & Chan Jun Yu & Amoolya Nirmal & Sujaya Kumar, 2020. "Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    9. Jung Ho Yoon & Zhongrui Wang & Kyung Min Kim & Huaqiang Wu & Vignesh Ravichandran & Qiangfei Xia & Cheol Seong Hwang & J. Joshua Yang, 2018. "An artificial nociceptor based on a diffusive memristor," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Matteo Cartiglia & Filippo Costa & Shyam Narayanan & Cat-Vu H. Bui & Hasan Ulusan & Nicoletta Risi & Germain Haessig & Andreas Hierlemann & Fernando Cardes & Giacomo Indiveri, 2024. "A 4096 channel event-based multielectrode array with asynchronous outputs compatible with neuromorphic processors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yue Yang & Fangduo Zhu & Xumeng Zhang & Pei Chen & Yongzhou Wang & Jiaxue Zhu & Yanting Ding & Lingli Cheng & Chao Li & Hao Jiang & Zhongrui Wang & Peng Lin & Tuo Shi & Ming Wang & Qi Liu & Ningsheng , 2024. "Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Man Yao & Ole Richter & Guangshe Zhao & Ning Qiao & Yannan Xing & Dingheng Wang & Tianxiang Hu & Wei Fang & Tugba Demirci & Michele Marchi & Lei Deng & Tianyi Yan & Carsten Nielsen & Sadique Sheik & C, 2024. "Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Romain Beaubois & Jérémy Cheslet & Tomoya Duenki & Giuseppe De Venuto & Marta Carè & Farad Khoyratee & Michela Chiappalone & Pascal Branchereau & Yoshiho Ikeuchi & Timothée Levi, 2024. "BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jody Pacalon & Guillaume Audic & Justine Magnat & Manon Philip & Jérôme Golebiowski & Christophe J. Moreau & Jérémie Topin, 2023. "Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Imke Krauhausen & Sophie Griggs & Iain McCulloch & Jaap M. J. Toonder & Paschalis Gkoupidenis & Yoeri Burgt, 2024. "Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    13. Yaqian Liu & Di Liu & Changsong Gao & Xianghong Zhang & Rengjian Yu & Xiumei Wang & Enlong Li & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2022. "Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Jinlei Zhang & Jiayong Zhang & Yaping Qi & Shuainan Gong & Hang Xu & Zhenqi Liu & Ran Zhang & Mohammad A. Sadi & Demid Sychev & Run Zhao & Hongbin Yang & Zhenping Wu & Dapeng Cui & Lin Wang & Chunlan , 2024. "Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Chang Liu & Pek Jun Tiw & Teng Zhang & Yanghao Wang & Lei Cai & Rui Yuan & Zelun Pan & Wenshuo Yue & Yaoyu Tao & Yuchao Yang, 2024. "VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Diane Aguilar & Fengli Zhu & Antoine Millet & Nicolas Millet & Patrizia Germano & Joseph Pisegna & Omid Akbari & Taylor A. Doherty & Marc Swidergall & Nicholas Jendzjowsky, 2024. "Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Yu Tao & Yuan Zhang & Xiaohong Jin & Nan Hua & Hong Liu & Renfei Qi & Zitong Huang & Yufang Sun & Dongsheng Jiang & Terrance P. Snutch & Xinghong Jiang & Jin Tao, 2023. "Epigenetic regulation of beta-endorphin synthesis in hypothalamic arcuate nucleus neurons modulates neuropathic pain in a rodent pain model," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Jörn Lötsch & Violeta Dimova & Isabel Lieb & Michael Zimmermann & Bruno G Oertel & Alfred Ultsch, 2015. "Multimodal Distribution of Human Cold Pain Thresholds," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    20. Boyuan Cui & Zhen Fan & Wenjie Li & Yihong Chen & Shuai Dong & Zhengwei Tan & Shengliang Cheng & Bobo Tian & Ruiqiang Tao & Guo Tian & Deyang Chen & Zhipeng Hou & Minghui Qin & Min Zeng & Xubing Lu & , 2022. "Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48908-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.