IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29119-5.html
   My bibliography  Save this article

Author Correction: Embodied neuromorphic intelligence

Author

Listed:
  • Chiara Bartolozzi

    (Istituto Italiano di Tecnologia)

  • Giacomo Indiveri

    (Institute of Neuroinformatics, University of Zurich and ETH Zurich)

  • Elisa Donati

    (Institute of Neuroinformatics, University of Zurich and ETH Zurich)

Abstract

No abstract is available for this item.

Suggested Citation

  • Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Author Correction: Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29119-5
    DOI: 10.1038/s41467-022-29119-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29119-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29119-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yue Yang & Fangduo Zhu & Xumeng Zhang & Pei Chen & Yongzhou Wang & Jiaxue Zhu & Yanting Ding & Lingli Cheng & Chao Li & Hao Jiang & Zhongrui Wang & Peng Lin & Tuo Shi & Ming Wang & Qi Liu & Ningsheng , 2024. "Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Imke Krauhausen & Sophie Griggs & Iain McCulloch & Jaap M. J. Toonder & Paschalis Gkoupidenis & Yoeri Burgt, 2024. "Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Man Yao & Ole Richter & Guangshe Zhao & Ning Qiao & Yannan Xing & Dingheng Wang & Tianxiang Hu & Wei Fang & Tugba Demirci & Michele Marchi & Lei Deng & Tianyi Yan & Carsten Nielsen & Sadique Sheik & C, 2024. "Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Shengbo Wang & Shuo Gao & Chenyu Tang & Edoardo Occhipinti & Cong Li & Shurui Wang & Jiaqi Wang & Hubin Zhao & Guohua Hu & Arokia Nathan & Ravinder Dahiya & Luigi Giuseppe Occhipinti, 2024. "Memristor-based adaptive neuromorphic perception in unstructured environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Romain Beaubois & Jérémy Cheslet & Tomoya Duenki & Giuseppe De Venuto & Marta Carè & Farad Khoyratee & Michela Chiappalone & Pascal Branchereau & Yoshiho Ikeuchi & Timothée Levi, 2024. "BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Matteo Cartiglia & Filippo Costa & Shyam Narayanan & Cat-Vu H. Bui & Hasan Ulusan & Nicoletta Risi & Germain Haessig & Andreas Hierlemann & Fernando Cardes & Giacomo Indiveri, 2024. "A 4096 channel event-based multielectrode array with asynchronous outputs compatible with neuromorphic processors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29119-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.