IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54789-8.html
   My bibliography  Save this article

Embodied neuromorphic synergy for lighting-robust machine vision to see in extreme bright

Author

Listed:
  • Shijie Lin

    (The University of Hong Kong)

  • Guangze Zheng

    (The University of Hong Kong)

  • Ziwei Wang

    (College of Engineering and Computer Science Australian National University)

  • Ruihua Han

    (The University of Hong Kong)

  • Wanli Xing

    (The University of Hong Kong)

  • Zeqing Zhang

    (The University of Hong Kong)

  • Yifan Peng

    (The University of Hong Kong
    The University of Hong Kong)

  • Jia Pan

    (The University of Hong Kong
    LimX Dynamics)

Abstract

Proper exposure settings are crucial for modern machine vision cameras to accurately convert light into clear images. However, traditional auto-exposure solutions are vulnerable to illumination changes, splitting the continuous acquisition of unsaturated images, which significantly degrades the overall performance of underlying intelligent systems. Here we present the neuromorphic exposure control (NEC) system. This system effectively alleviates the longstanding saturation problem at its core by exploiting bio-principles found in peripheral vision to compute a trilinear event double integral (TEDI). This approach enables accurate connections between events and frames in the physics space for swift irradiance prediction, ultimately facilitating rapid control parameter updates. Our experimental results demonstrate the remarkable efficiency, low latency, superior generalization capability, and bio-inspired nature of the NEC in delivering timely and robust neuromorphic synergy for lighting-robust machine vision across a wide range of real-world applications. These applications encompass autonomous driving, mixed-reality, and three-dimensional reconstruction.

Suggested Citation

  • Shijie Lin & Guangze Zheng & Ziwei Wang & Ruihua Han & Wanli Xing & Zeqing Zhang & Yifan Peng & Jia Pan, 2024. "Embodied neuromorphic synergy for lighting-robust machine vision to see in extreme bright," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54789-8
    DOI: 10.1038/s41467-024-54789-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54789-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54789-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Huajie Wu & Yihang Li & Wei Xu & Fanze Kong & Fu Zhang, 2024. "Publisher Correction: Moving event detection from LiDAR point streams," Nature Communications, Nature, vol. 15(1), pages 1-1, December.
    3. Sarvesh Kolekar & Joost Winter & David Abbink, 2020. "Human-like driving behaviour emerges from a risk-based driver model," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Christopher Rogers & Alexander Y. Piggott & David J. Thomson & Robert F. Wiser & Ion E. Opris & Steven A. Fortune & Andrew J. Compston & Alexander Gondarenko & Fanfan Meng & Xia Chen & Graham T. Reed , 2021. "A universal 3D imaging sensor on a silicon photonics platform," Nature, Nature, vol. 590(7845), pages 256-261, February.
    5. Huajie Wu & Yihang Li & Wei Xu & Fanze Kong & Fu Zhang, 2024. "Moving event detection from LiDAR point streams," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Corey M. Ziemba & Eero P. Simoncelli, 2021. "Opposing effects of selectivity and invariance in peripheral vision," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Wenhao Yu & Chengxiang Zhao & Hong Wang & Jiaxin Liu & Xiaohan Ma & Yingkai Yang & Jun Li & Weida Wang & Xiaosong Hu & Ding Zhao, 2024. "Online legal driving behavior monitoring for self-driving vehicles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Author Correction: Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    9. Feng Wen & Zixuan Zhang & Tianyiyi He & Chengkuo Lee, 2021. "AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengbo Wang & Shuo Gao & Chenyu Tang & Edoardo Occhipinti & Cong Li & Shurui Wang & Jiaqi Wang & Hubin Zhao & Guohua Hu & Arokia Nathan & Ravinder Dahiya & Luigi Giuseppe Occhipinti, 2024. "Memristor-based adaptive neuromorphic perception in unstructured environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Qian Li & Ting Tan & Benlong Wang & Zhimiao Yan, 2024. "Avian-inspired embodied perception in biohybrid flapping-wing robotics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Matteo Cartiglia & Filippo Costa & Shyam Narayanan & Cat-Vu H. Bui & Hasan Ulusan & Nicoletta Risi & Germain Haessig & Andreas Hierlemann & Fernando Cardes & Giacomo Indiveri, 2024. "A 4096 channel event-based multielectrode array with asynchronous outputs compatible with neuromorphic processors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yue Yang & Fangduo Zhu & Xumeng Zhang & Pei Chen & Yongzhou Wang & Jiaxue Zhu & Yanting Ding & Lingli Cheng & Chao Li & Hao Jiang & Zhongrui Wang & Peng Lin & Tuo Shi & Ming Wang & Qi Liu & Ningsheng , 2024. "Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Man Yao & Ole Richter & Guangshe Zhao & Ning Qiao & Yannan Xing & Dingheng Wang & Tianxiang Hu & Wei Fang & Tugba Demirci & Michele Marchi & Lei Deng & Tianyi Yan & Carsten Nielsen & Sadique Sheik & C, 2024. "Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Beckert, Bernd & Kroll, Henning, 2024. "Definition of the research and innovation field of "Artificial Intelligence" and approaches to determining quality," Discussion Papers "Innovation Systems and Policy Analysis" 88, Fraunhofer Institute for Systems and Innovation Research (ISI).
    8. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Romain Beaubois & Jérémy Cheslet & Tomoya Duenki & Giuseppe De Venuto & Marta Carè & Farad Khoyratee & Michela Chiappalone & Pascal Branchereau & Yoshiho Ikeuchi & Timothée Levi, 2024. "BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Gabriel Béna & Dan F. M. Goodman, 2025. "Dynamics of specialization in neural modules under resource constraints," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Imke Krauhausen & Sophie Griggs & Iain McCulloch & Jaap M. J. Toonder & Paschalis Gkoupidenis & Yoeri Burgt, 2024. "Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Jianfeng Wu & Jialin Zhang & Ruiqi Jiang & Hao Wu & Shouheng Chen & Xinlei Zhang & Wenhui Wang & Yuanfang Yu & Qiang Fu & Rui Lin & Yueying Cui & Tao Zhou & Zhenliang Hu & Dongyang Wan & Xiaolong Chen, 2025. "High-sensitivity, high-speed, broadband mid-infrared photodetector enabled by a van der Waals heterostructure with a vertical transport channel," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    14. Zhao, Lin-Chuan & Zhou, Teng & Chang, Si-Deng & Zou, Hong-Xiang & Gao, Qiu-Hua & Wu, Zhi-Yuan & Yan, Ge & Wei, Ke-Xiang & Yeatman, Eric M. & Meng, Guang & Zhang, Wen-Ming, 2024. "A disposable cup inspired smart floor for trajectory recognition and human-interactive sensing," Applied Energy, Elsevier, vol. 357(C).
    15. Yanhua Liu & Jinlong Wang & Tao Liu & Zhiting Wei & Bin Luo & Mingchao Chi & Song Zhang & Chenchen Cai & Cong Gao & Tong Zhao & Shuangfei Wang & Shuangxi Nie, 2025. "Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    16. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Xiaoli Jing & Ruizhe Zhao & Xin Li & Qiang Jiang & Chengzhi Li & Guangzhou Geng & Junjie Li & Yongtian Wang & Lingling Huang, 2022. "Single-shot 3D imaging with point cloud projection based on metadevice," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yunlong Xu & Zhongda Sun & Zhiqing Bai & Hua Shen & Run Wen & Fumei Wang & Guangbiao Xu & Chengkuo Lee, 2024. "Bionic e-skin with precise multi-directional droplet sliding sensing for enhanced robotic perception," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54789-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.