IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09909-0.html
   My bibliography  Save this article

Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation

Author

Listed:
  • Alessandra Alberti

    (CNR-IMM, Zona Industriale Strada VIII n°5)

  • Corrado Bongiorno

    (CNR-IMM, Zona Industriale Strada VIII n°5)

  • Emanuele Smecca

    (CNR-IMM, Zona Industriale Strada VIII n°5)

  • Ioannis Deretzis

    (CNR-IMM, Zona Industriale Strada VIII n°5)

  • Antonino La Magna

    (CNR-IMM, Zona Industriale Strada VIII n°5)

  • Corrado Spinella

    (CNR-IMM, Zona Industriale Strada VIII n°5)

Abstract

Studying defect formation and evolution in MethylAmmonium lead Iodide (MAPbI3) perovskite layers has a bottleneck in the softness of the matter and in its consequent sensitivity to external solicitations. Here we report that, in a polycrystalline MAPbI3 layer, Pb-related defects aggregate into nanoclusters preferentially at the triple grain boundaries as unveiled by Transmission Electron Microscopy (TEM) analyses at low total electron dose. Pb-clusters are killer against MAPbI3 integrity since they progressively feed up the hosting matrix. This progression is limited by the concomitant but slower transformation of the MAPbI3 core to fragmented and interconnected nano-grains of 6H-PbI2 that are structurally linked to the mother grain as in strain-relaxed heteroepitaxial coupling. The phenomenon occurs more frequently under TEM degradation whilst air degradation is more prone to leave uncorrelated [001]-oriented 2H-PbI2 grains as statistically found by X-Ray Diffraction. This path is kinetically costlier but thermodynamically favoured and is easily activated by catalytic species.

Suggested Citation

  • Alessandra Alberti & Corrado Bongiorno & Emanuele Smecca & Ioannis Deretzis & Antonino La Magna & Corrado Spinella, 2019. "Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09909-0
    DOI: 10.1038/s41467-019-09909-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09909-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09909-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan S. Zhidkov & Azat F. Akbulatov & Liana N. Inasaridze & Andrey I. Kukharenko & Lyubov A. Frolova & Seif O. Cholakh & Chu-Chen Chueh & Pavel A. Troshin & Ernst Z. Kurmaev, 2021. "Influence of Oxygen Ion Migration from Substrates on Photochemical Degradation of CH 3 NH 3 PbI 3 Hybrid Perovskite," Energies, MDPI, vol. 14(16), pages 1-9, August.
    2. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Salvatore Valastro & Emanuele Smecca & Salvatore Sanzaro & Filippo Giannazzo & Ioannis Deretzis & Antonino La Magna & Youhei Numata & Ajay Kumar Jena & Tsutomu Miyasaka & Antonio Gagliano & Alessandra, 2020. "Improved Electrical and Structural Stability in HTL-Free Perovskite Solar Cells by Vacuum Curing Treatment," Energies, MDPI, vol. 13(15), pages 1-11, August.
    4. Jingxian Zhong & Dawei Zhou & Qi Bai & Chao Liu & Xinlian Fan & Hehe Zhang & Congzhou Li & Ran Jiang & Peiyi Zhao & Jiaxiao Yuan & Xiaojiao Li & Guixiang Zhan & Hongyu Yang & Jing Liu & Xuefen Song & , 2024. "Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09909-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.