IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7726d10.1038_s41586-018-0576-2.html
   My bibliography  Save this article

Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures

Author

Listed:
  • Yu Cao

    (Nanjing Tech University (NanjingTech))

  • Nana Wang

    (Nanjing Tech University (NanjingTech))

  • He Tian

    (Zhejiang University)

  • Jingshu Guo

    (Zhejiang University)

  • Yingqiang Wei

    (Nanjing Tech University (NanjingTech))

  • Hong Chen

    (Nanjing Tech University (NanjingTech))

  • Yanfeng Miao

    (Nanjing Tech University (NanjingTech))

  • Wei Zou

    (Nanjing Tech University (NanjingTech))

  • Kang Pan

    (Nanjing Tech University (NanjingTech))

  • Yarong He

    (Nanjing Tech University (NanjingTech))

  • Hui Cao

    (Nanjing Tech University (NanjingTech))

  • You Ke

    (Nanjing Tech University (NanjingTech))

  • Mengmeng Xu

    (Nanjing Tech University (NanjingTech))

  • Ying Wang

    (Nanjing Tech University (NanjingTech))

  • Ming Yang

    (Nanjing Tech University (NanjingTech))

  • Kai Du

    (Zhejiang University)

  • Zewu Fu

    (Nanjing Tech University (NanjingTech))

  • Decheng Kong

    (Nanjing Tech University (NanjingTech))

  • Daoxin Dai

    (Zhejiang University)

  • Yizheng Jin

    (Zhejiang University)

  • Gongqiang Li

    (Nanjing Tech University (NanjingTech))

  • Hai Li

    (Nanjing Tech University (NanjingTech))

  • Qiming Peng

    (Nanjing Tech University (NanjingTech))

  • Jianpu Wang

    (Nanjing Tech University (NanjingTech))

  • Wei Huang

    (Nanjing Tech University (NanjingTech)
    Nanjing University of Posts and Telecommunications
    Northwestern Polytechnical University (NPU))

Abstract

Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society—for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1–3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6–9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved—values that approach those of the best-performing organic LEDs.

Suggested Citation

  • Yu Cao & Nana Wang & He Tian & Jingshu Guo & Yingqiang Wei & Hong Chen & Yanfeng Miao & Wei Zou & Kang Pan & Yarong He & Hui Cao & You Ke & Mengmeng Xu & Ying Wang & Ming Yang & Kai Du & Zewu Fu & Dec, 2018. "Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures," Nature, Nature, vol. 562(7726), pages 249-253, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7726:d:10.1038_s41586-018-0576-2
    DOI: 10.1038/s41586-018-0576-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0576-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0576-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Tian & Meifang Yang & Yuxuan Fang & Shuo Zhang & Yuxin Chen & Lianzhou Wang & Wu-Qiang Wu, 2023. "Large-area waterproof and durable perovskite luminescent textiles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Guangyi Shi & Zongming Huang & Ran Qiao & Wenjing Chen & Zhijian Li & Yaping Li & Kai Mu & Ting Si & Zhengguo Xiao, 2024. "Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Jong Hyun Park & Chung Hyeon Jang & Eui Dae Jung & Seungjin Lee & Myoung Hoon Song & Bo Ram Lee, 2020. "A-Site Cation Engineering for Efficient Blue-Emissive Perovskite Light-Emitting Diodes," Energies, MDPI, vol. 13(24), pages 1-8, December.
    6. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Yongjie Liu & Chen Tao & Yu Cao & Liangyan Chen & Shuxin Wang & Pei Li & Cheng Wang & Chenwei Liu & Feihong Ye & Shengyong Hu & Meng Xiao & Zheng Gao & Pengbing Gui & Fang Yao & Kailian Dong & Jiashua, 2022. "Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    10. Kang Wang & Zih-Yu Lin & Zihan Zhang & Linrui Jin & Ke Ma & Aidan H. Coffey & Harindi R. Atapattu & Yao Gao & Jee Yung Park & Zitang Wei & Blake P. Finkenauer & Chenhui Zhu & Xiangeng Meng & Sarah N. , 2023. "Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Xiang Guan & Yuqing Li & Yuanyuan Meng & Kongxiang Wang & Kebin Lin & Yujie Luo & Jing Wang & Zhongtao Duan & Hong Liu & Liu Yang & Lingfang Zheng & Junpeng Lin & Yalian Weng & Fengxian Xie & Jianxun , 2024. "Targeted elimination of tetravalent-Sn-induced defects for enhanced efficiency and stability in lead-free NIR-II perovskite LEDs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yaxiao Lian & Dongchen Lan & Shiyu Xing & Bingbing Guo & Zhixiang Ren & Runchen Lai & Chen Zou & Baodan Zhao & Richard H. Friend & Dawei Di, 2022. "Ultralow-voltage operation of light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Pierre Gaffuri & Elena Stolyarova & Daniel Llerena & Estelle Appert & Marianne Consonni & Stéphane Robin & Vincent Consonni, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Post-Print hal-03177349, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7726:d:10.1038_s41586-018-0576-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.