IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7726d10.1038_s41586-018-0575-3.html
   My bibliography  Save this article

Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent

Author

Listed:
  • Kebin Lin

    (Huaqiao University)

  • Jun Xing

    (Nanyang Technological University)

  • Li Na Quan

    (University of Toronto)

  • F. Pelayo García Arquer

    (University of Toronto)

  • Xiwen Gong

    (University of Toronto)

  • Jianxun Lu

    (Huaqiao University)

  • Liqiang Xie

    (Huaqiao University)

  • Weijie Zhao

    (Nanyang Technological University)

  • Di Zhang

    (Huaqiao University)

  • Chuanzhong Yan

    (Huaqiao University)

  • Wenqiang Li

    (Huaqiao University)

  • Xinyi Liu

    (Huaqiao University)

  • Yan Lu

    (Huaqiao University)

  • Jeffrey Kirman

    (University of Toronto)

  • Edward H. Sargent

    (University of Toronto)

  • Qihua Xiong

    (Nanyang Technological University)

  • Zhanhua Wei

    (Huaqiao University)

Abstract

Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1–3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4–8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively—still well behind the performance of organic LEDs10–12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display.

Suggested Citation

  • Kebin Lin & Jun Xing & Li Na Quan & F. Pelayo García Arquer & Xiwen Gong & Jianxun Lu & Liqiang Xie & Weijie Zhao & Di Zhang & Chuanzhong Yan & Wenqiang Li & Xinyi Liu & Yan Lu & Jeffrey Kirman & Edwa, 2018. "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, Nature, vol. 562(7726), pages 245-248, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7726:d:10.1038_s41586-018-0575-3
    DOI: 10.1038/s41586-018-0575-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0575-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0575-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiachen & Li, Hao & Shang, Xianfa & Pu, Yang & Zhang, Mengtian & Pan, Xingchen, 2024. "Exploring the impact of fintech, human capital, mineral policy, and institutional quality on poverty traps: Evidence from resource-dependent economies," Resources Policy, Elsevier, vol. 93(C).
    2. Yongjie Liu & Chen Tao & Yu Cao & Liangyan Chen & Shuxin Wang & Pei Li & Cheng Wang & Chenwei Liu & Feihong Ye & Shengyong Hu & Meng Xiao & Zheng Gao & Pengbing Gui & Fang Yao & Kailian Dong & Jiashua, 2022. "Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Guangyi Shi & Zongming Huang & Ran Qiao & Wenjing Chen & Zhijian Li & Yaping Li & Kai Mu & Ting Si & Zhengguo Xiao, 2024. "Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xin Zhang & Hao Suo & Yang Guo & Jiangkun Chen & Yu Wang & Xiaohe Wei & Weilin Zheng & Shuohan Li & Feng Wang, 2024. "Continuous tuning of persistent luminescence wavelength by intermediate-phase engineering in inorganic crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    6. Kang Wang & Zih-Yu Lin & Zihan Zhang & Linrui Jin & Ke Ma & Aidan H. Coffey & Harindi R. Atapattu & Yao Gao & Jee Yung Park & Zitang Wei & Blake P. Finkenauer & Chenhui Zhu & Xiangeng Meng & Sarah N. , 2023. "Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yang Bryan Cao & Daquan Zhang & Qianpeng Zhang & Xiao Qiu & Yu Zhou & Swapnadeep Poddar & Yu Fu & Yudong Zhu & Jin-Feng Liao & Lei Shu & Beitao Ren & Yucheng Ding & Bing Han & Zhubing He & Dai-Bin Kua, 2023. "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Junqing Xu & Kejun Li & Uyen N. Huynh & Mayada Fadel & Jinsong Huang & Ravishankar Sundararaman & Valy Vardeny & Yuan Ping, 2024. "How spin relaxes and dephases in bulk halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Boucar Diouf & Aarti Muley & Ramchandra Pode, 2023. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications," Energies, MDPI, vol. 16(18), pages 1-29, September.
    10. Sulay Saha & Prashant Kumar Gupta & Raj Ganesh S. Pala, 2021. "Stabilization of non‐native polymorphs for electrocatalysis and energy storage systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    11. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Pingping Zhang & Gaoling Yang & Fei Li & Jianbing Shi & Haizheng Zhong, 2022. "Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Qi Han & Jun Wang & Shuangshuang Tian & Shen Hu & Xuefeng Wu & Rongxu Bai & Haibin Zhao & David W. Zhang & Qingqing Sun & Li Ji, 2024. "Inorganic perovskite-based active multifunctional integrated photonic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Yaxiao Lian & Dongchen Lan & Shiyu Xing & Bingbing Guo & Zhixiang Ren & Runchen Lai & Chen Zou & Baodan Zhao & Richard H. Friend & Dawei Di, 2022. "Ultralow-voltage operation of light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7726:d:10.1038_s41586-018-0575-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.