IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43949-x.html
   My bibliography  Save this article

Quantum transport of high-dimensional spatial information with a nonlinear detector

Author

Listed:
  • Bereneice Sephton

    (University of the Witwatersrand)

  • Adam Vallés

    (University of the Witwatersrand
    Chiba University
    The Barcelona Institute of Science and Technology)

  • Isaac Nape

    (University of the Witwatersrand)

  • Mitchell A. Cox

    (University of the Witwatersrand)

  • Fabian Steinlechner

    (Fraunhofer Institute for Applied Optics and Precision Engineering
    Friedrich Schiller University Jena, Abbe Center of Photonics)

  • Thomas Konrad

    (University of KwaZulu-Natal
    National Institute of Theoretical and Computational Sciences (NITheCS))

  • Juan P. Torres

    (The Barcelona Institute of Science and Technology
    Universitat Politecnica de Catalunya)

  • Filippus S. Roux

    (National Metrology Institute of South Africa)

  • Andrew Forbes

    (University of the Witwatersrand)

Abstract

Information exchange between two distant parties, where information is shared without physically transporting it, is a crucial resource in future quantum networks. Doing so with high-dimensional states offers the promise of higher information capacity and improved resilience to noise, but progress to date has been limited. Here we demonstrate how a nonlinear parametric process allows for arbitrary high-dimensional state projections in the spatial degree of freedom, where a strong coherent field enhances the probability of the process. This allows us to experimentally realise quantum transport of high-dimensional spatial information facilitated by a quantum channel with a single entangled pair and a nonlinear spatial mode detector. Using sum frequency generation we upconvert one of the photons from an entangled pair resulting in high-dimensional spatial information transported to the other. We realise a d = 15 quantum channel for arbitrary photonic spatial modes which we demonstrate by faithfully transferring information encoded into orbital angular momentum, Hermite-Gaussian and arbitrary spatial mode superpositions, without requiring knowledge of the state to be sent. Our demonstration merges the nascent fields of nonlinear control of structured light with quantum processes, offering a new approach to harnessing high-dimensional quantum states, and may be extended to other degrees of freedom too.

Suggested Citation

  • Bereneice Sephton & Adam Vallés & Isaac Nape & Mitchell A. Cox & Fabian Steinlechner & Thomas Konrad & Juan P. Torres & Filippus S. Roux & Andrew Forbes, 2023. "Quantum transport of high-dimensional spatial information with a nonlinear detector," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43949-x
    DOI: 10.1038/s41467-023-43949-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43949-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43949-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingwen Zhang & Megan Agnew & Thomas Roger & Filippus S. Roux & Thomas Konrad & Daniele Faccio & Jonathan Leach & Andrew Forbes, 2017. "Simultaneous entanglement swapping of multiple orbital angular momentum states of light," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. Michael Kues & Christian Reimer & Piotr Roztocki & Luis Romero Cortés & Stefania Sciara & Benjamin Wetzel & Yanbing Zhang & Alfonso Cino & Sai T. Chu & Brent E. Little & David J. Moss & Lucia Caspani , 2017. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Nature, vol. 546(7660), pages 622-626, June.
    3. Shengshuai Liu & Yanbo Lou & Jietai Jing, 2020. "Orbital angular momentum multiplexed deterministic all-optical quantum teleportation," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Xi-Lin Wang & Xin-Dong Cai & Zu-En Su & Ming-Cheng Chen & Dian Wu & Li Li & Nai-Le Liu & Chao-Yang Lu & Jian-Wei Pan, 2015. "Quantum teleportation of multiple degrees of freedom of a single photon," Nature, Nature, vol. 518(7540), pages 516-519, February.
    5. Isaac Nape & Valeria Rodríguez-Fajardo & Feng Zhu & Hsiao-Chih Huang & Jonathan Leach & Andrew Forbes, 2021. "Measuring dimensionality and purity of high-dimensional entangled states," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    6. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    10. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    11. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2020. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving," CREMA Working Paper Series 2020-18, Center for Research in Economics, Management and the Arts (CREMA).
    13. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).
    17. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2021. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)," CREMA Working Paper Series 2021-14, Center for Research in Economics, Management and the Arts (CREMA).
    19. Jiang, Min & Li, Hui & Zhang, Zeng-ke & Zeng, Jia, 2011. "Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 760-768.
    20. Saket Kaushal & A. Aadhi & Anthony Roberge & Roberto Morandotti & Raman Kashyap & José Azaña, 2023. "All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43949-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.