IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30948-7.html
   My bibliography  Save this article

A boundary migration model for imaging within volumetric scattering media

Author

Listed:
  • Dongyu Du

    (Tsinghua University)

  • Xin Jin

    (Tsinghua University)

  • Rujia Deng

    (Tsinghua University)

  • Jinshi Kang

    (Tsinghua University)

  • Hongkun Cao

    (Tsinghua University)

  • Yihui Fan

    (Tsinghua University)

  • Zhiheng Li

    (Tsinghua University)

  • Haoqian Wang

    (Tsinghua University)

  • Xiangyang Ji

    (Tsinghua University
    Tsinghua University
    Tsinghua University)

  • Jingyan Song

    (Tsinghua Innovation Center in Zhuhai)

Abstract

Effectively imaging within volumetric scattering media is of great importance and challenging especially in macroscopic applications. Recent works have demonstrated the ability to image through scattering media or within the weak volumetric scattering media using spatial distribution or temporal characteristics of the scattered field. Here, we focus on imaging Lambertian objects embedded in highly scattering media, where signal photons are dramatically attenuated during propagation and highly coupled with background photons. We address these challenges by providing a time-to-space boundary migration model (BMM) of the scattered field to convert the scattered measurements in spectral form to the scene information in the temporal domain using all of the optical signals. The experiments are conducted under two typical scattering scenarios: 2D and 3D Lambertian objects embedded in the polyethylene foam and the fog, which demonstrate the effectiveness of the proposed algorithm. It outperforms related works including time gating in terms of reconstruction precision and scattering strength. Even though the proportion of signal photons is only 0.75%, Lambertian objects located at more than 25 transport mean free paths (TMFPs), corresponding to the round-trip scattering length of more than 50 TMFPs, can be reconstructed. Also, the proposed method provides low reconstruction complexity and millisecond-scale runtime, which significantly benefits its application.

Suggested Citation

  • Dongyu Du & Xin Jin & Rujia Deng & Jinshi Kang & Hongkun Cao & Yihui Fan & Zhiheng Li & Haoqian Wang & Xiangyang Ji & Jingyan Song, 2022. "A boundary migration model for imaging within volumetric scattering media," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30948-7
    DOI: 10.1038/s41467-022-30948-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30948-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30948-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Redo-Sanchez & Barmak Heshmat & Alireza Aghasi & Salman Naqvi & Mingjie Zhang & Justin Romberg & Ramesh Raskar, 2016. "Terahertz time-gated spectral imaging for content extraction through layered structures," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    2. Jacopo Bertolotti & Elbert G. van Putten & Christian Blum & Ad Lagendijk & Willem L. Vos & Allard P. Mosk, 2012. "Non-invasive imaging through opaque scattering layers," Nature, Nature, vol. 491(7423), pages 232-234, November.
    3. David B. Lindell & Gordon Wetzstein, 2020. "Three-dimensional imaging through scattering media based on confocal diffuse tomography," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Matthew O’Toole & David B. Lindell & Gordon Wetzstein, 2018. "Confocal non-line-of-sight imaging based on the light-cone transform," Nature, Nature, vol. 555(7696), pages 338-341, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qihang Zhang & Janaka C. Gamekkanda & Ajinkya Pandit & Wenlong Tang & Charles Papageorgiou & Chris Mitchell & Yihui Yang & Michael Schwaerzler & Tolutola Oyetunde & Richard D. Braatz & Allan S. Myerso, 2023. "Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE)," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Florian Willomitzer & Prasanna V. Rangarajan & Fengqiang Li & Muralidhar M. Balaji & Marc P. Christensen & Oliver Cossairt, 2021. "Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Ji Hyun Nam & Eric Brandt & Sebastian Bauer & Xiaochun Liu & Marco Renna & Alberto Tosi & Eftychios Sifakis & Andreas Velten, 2021. "Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Liheng Bian & Xuyang Chang & Shaowei Jiang & Liming Yang & Xinrui Zhan & Shicong Liu & Daoyu Li & Rong Yan & Zhen Gao & Jun Zhang, 2024. "Large-scale scattering-augmented optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Xintong Liu & Jianyu Wang & Leping Xiao & Zuoqiang Shi & Xing Fu & Lingyun Qiu, 2023. "Non-line-of-sight imaging with arbitrary illumination and detection pattern," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Lei Zhu & Fernando Soldevila & Claudio Moretti & Alexandra d’Arco & Antoine Boniface & Xiaopeng Shao & Hilton B. Aguiar & Sylvain Gigan, 2022. "Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Zhipeng Yu & Huanhao Li & Wannian Zhao & Po-Sheng Huang & Yu-Tsung Lin & Jing Yao & Wenzhao Li & Qi Zhao & Pin Chieh Wu & Bo Li & Patrice Genevet & Qinghua Song & Puxiang Lai, 2024. "High-security learning-based optical encryption assisted by disordered metasurface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Robinson Czajkowski & John Murray-Bruce, 2024. "Two-edge-resolved three-dimensional non-line-of-sight imaging with an ordinary camera," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Sheila Seidel & Hoover Rueda-Chacón & Iris Cusini & Federica Villa & Franco Zappa & Christopher Yu & Vivek K Goyal, 2023. "Non-line-of-sight snapshots and background mapping with an active corner camera," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Md Sadman Sakib Rahman & Tianyi Gan & Emir Arda Deger & Çağatay Işıl & Mona Jarrahi & Aydogan Ozcan, 2023. "Learning diffractive optical communication around arbitrary opaque occlusions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Hongkuan Zhang & Qiyuan Wang & Mathias Fink & Guancong Ma, 2024. "Optimizing multi-user indoor sound communications with acoustic reconfigurable metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Y. Jauregui-Sánchez & H. Penketh & J. Bertolotti, 2022. "Tracking moving objects through scattering media via speckle correlations," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Tian Shi & Liangsheng Li & He Cai & Xianli Zhu & Qingfan Shi & Ning Zheng, 2022. "Computational imaging of moving objects obscured by a random corridor via speckle correlations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30948-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.