IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45397-7.html
   My bibliography  Save this article

Two-edge-resolved three-dimensional non-line-of-sight imaging with an ordinary camera

Author

Listed:
  • Robinson Czajkowski

    (University of South Florida)

  • John Murray-Bruce

    (University of South Florida)

Abstract

We introduce an approach for three-dimensional full-colour non-line-of-sight imaging with an ordinary camera that relies on a complementary combination of a new measurement acquisition strategy, scene representation model, and tailored reconstruction method. From an ordinary photograph of a matte line-of-sight surface illuminated by the hidden scene, our approach reconstructs a three-dimensional image of the scene hidden behind an occluding structure by exploiting two orthogonal edges of the structure for transverse resolution along azimuth and elevation angles and an information orthogonal scene representation for accurate range resolution. Prior demonstrations beyond two-dimensional reconstructions used expensive, specialized optical systems to gather information about the hidden scene. Here, we achieve accurate three-dimensional imaging using inexpensive, and ubiquitous hardware, without requiring a calibration image. Thus, our system may find use in indoor situations like reconnaissance and search-and-rescue.

Suggested Citation

  • Robinson Czajkowski & John Murray-Bruce, 2024. "Two-edge-resolved three-dimensional non-line-of-sight imaging with an ordinary camera," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45397-7
    DOI: 10.1038/s41467-024-45397-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45397-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45397-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Rapp & Charles Saunders & Julián Tachella & John Murray-Bruce & Yoann Altmann & Jean-Yves Tourneret & Stephen McLaughlin & Robin M. A. Dawson & Franco N. C. Wong & Vivek K. Goyal, 2020. "Seeing around corners with edge-resolved transient imaging," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Charles Saunders & John Murray-Bruce & Vivek K Goyal, 2019. "Computational periscopy with an ordinary digital camera," Nature, Nature, vol. 565(7740), pages 472-475, January.
    3. Sheila Seidel & Hoover Rueda-Chacón & Iris Cusini & Federica Villa & Franco Zappa & Christopher Yu & Vivek K Goyal, 2023. "Non-line-of-sight snapshots and background mapping with an active corner camera," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Matthew O’Toole & David B. Lindell & Gordon Wetzstein, 2018. "Confocal non-line-of-sight imaging based on the light-cone transform," Nature, Nature, vol. 555(7696), pages 338-341, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sheila Seidel & Hoover Rueda-Chacón & Iris Cusini & Federica Villa & Franco Zappa & Christopher Yu & Vivek K Goyal, 2023. "Non-line-of-sight snapshots and background mapping with an active corner camera," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Ji Hyun Nam & Eric Brandt & Sebastian Bauer & Xiaochun Liu & Marco Renna & Alberto Tosi & Eftychios Sifakis & Andreas Velten, 2021. "Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Florian Willomitzer & Prasanna V. Rangarajan & Fengqiang Li & Muralidhar M. Balaji & Marc P. Christensen & Oliver Cossairt, 2021. "Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Tian Shi & Liangsheng Li & He Cai & Xianli Zhu & Qingfan Shi & Ning Zheng, 2022. "Computational imaging of moving objects obscured by a random corridor via speckle correlations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Xintong Liu & Jianyu Wang & Leping Xiao & Zuoqiang Shi & Xing Fu & Lingyun Qiu, 2023. "Non-line-of-sight imaging with arbitrary illumination and detection pattern," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Md Sadman Sakib Rahman & Tianyi Gan & Emir Arda Deger & Çağatay Işıl & Mona Jarrahi & Aydogan Ozcan, 2023. "Learning diffractive optical communication around arbitrary opaque occlusions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Dongyu Du & Xin Jin & Rujia Deng & Jinshi Kang & Hongkun Cao & Yihui Fan & Zhiheng Li & Haoqian Wang & Xiangyang Ji & Jingyan Song, 2022. "A boundary migration model for imaging within volumetric scattering media," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45397-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.