IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42338-8.html
   My bibliography  Save this article

Three-dimensional ultrasound matrix imaging

Author

Listed:
  • Flavien Bureau

    (PSL University, CNRS)

  • Justine Robin

    (PSL University, CNRS
    ESPCI Paris, PSL University, INSERM, CNRS)

  • Arthur Ber

    (PSL University, CNRS)

  • William Lambert

    (PSL University, CNRS
    Hologic / SuperSonic Imagine)

  • Mathias Fink

    (PSL University, CNRS)

  • Alexandre Aubry

    (PSL University, CNRS)

Abstract

Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.

Suggested Citation

  • Flavien Bureau & Justine Robin & Arthur Ber & William Lambert & Mathias Fink & Alexandre Aubry, 2023. "Three-dimensional ultrasound matrix imaging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42338-8
    DOI: 10.1038/s41467-023-42338-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42338-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42338-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongwoo Kwon & Jin Hee Hong & Sungsam Kang & Hojun Lee & Yonghyeon Jo & Ki Hean Kim & Seokchan Yoon & Wonshik Choi, 2023. "Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Seokchan Yoon & Hojun Lee & Jin Hee Hong & Yong-Sik Lim & Wonshik Choi, 2020. "Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Sungsam Kang & Pilsung Kang & Seungwon Jeong & Yongwoo Kwon & Taeseok D. Yang & Jin Hee Hong & Moonseok Kim & Kyung–Deok Song & Jin Hyoung Park & Jun Ho Lee & Myoung Joon Kim & Ki Hean Kim & Wonshik C, 2017. "High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanghyeon Park & Yonghyeon Jo & Minsu Kang & Jin Hee Hong & Sangyoon Ko & Suhyun Kim & Sangjun Park & Hae Chul Park & Sang-Hee Shim & Wonshik Choi, 2023. "Label-free adaptive optics single-molecule localization microscopy for whole zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jung Min Lee & Young-Woo Pyo & Yeon Jun Kim & Jin Hee Hong & Yonghyeon Jo & Wonshik Choi & Dingchang Lin & Hong-Gyu Park, 2023. "The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Yongwoo Kwon & Jin Hee Hong & Sungsam Kang & Hojun Lee & Yonghyeon Jo & Ki Hean Kim & Seokchan Yoon & Wonshik Choi, 2023. "Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Wonjun Choi & Munkyu Kang & Jin Hee Hong & Ori Katz & Byunghak Lee & Guang Hoon Kim & Youngwoon Choi & Wonshik Choi, 2022. "Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Ye-Ryoung Lee & Dong-Young Kim & Yonghyeon Jo & Moonseok Kim & Wonshik Choi, 2023. "Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42338-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.