IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42103-x.html
   My bibliography  Save this article

Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum

Author

Listed:
  • Mwikali Kioko

    (KEMRI-Wellcome Trust Research Programme
    Open University)

  • Alena Pance

    (Wellcome Sanger Institute
    University of Hertfordshire)

  • Shaban Mwangi

    (KEMRI-Wellcome Trust Research Programme)

  • David Goulding

    (Wellcome Sanger Institute)

  • Alison Kemp

    (University of Cambridge)

  • Martin Rono

    (KEMRI-Wellcome Trust Research Programme
    Pwani University Biosciences Research Centre, Pwani University)

  • Lynette Isabella Ochola-Oyier

    (KEMRI-Wellcome Trust Research Programme)

  • Pete C. Bull

    (KEMRI-Wellcome Trust Research Programme)

  • Philip Bejon

    (KEMRI-Wellcome Trust Research Programme
    University of Oxford)

  • Julian C. Rayner

    (University of Cambridge)

  • Abdirahman I. Abdi

    (KEMRI-Wellcome Trust Research Programme
    Pwani University Biosciences Research Centre, Pwani University
    University of Oxford)

Abstract

Plasmodium falciparum secretes extracellular vesicles (PfEVs) that contain parasite-derived RNA. However, the significance of the secreted RNA remains unexplored. Here, we compare secreted and intracellular RNA from asexual cultures of six P. falciparum lines. We find that secretion of RNA via extracellular vesicles is not only periodic throughout the asexual intraerythrocytic developmental cycle but is also highly conserved across P. falciparum isolates. We further demonstrate that the phases of RNA secreted via extracellular vesicles are discernibly shifted compared to those of the intracellular RNA within the secreting whole parasite. Finally, transcripts of genes with no known function during the asexual intraerythrocytic developmental cycle are enriched in PfEVs compared to the whole parasite. We conclude that the secretion of extracellular vesicles could be a putative posttranscriptional RNA regulation mechanism that is part of or synergise the classic RNA decay processes to maintain intracellular RNA levels in P. falciparum.

Suggested Citation

  • Mwikali Kioko & Alena Pance & Shaban Mwangi & David Goulding & Alison Kemp & Martin Rono & Lynette Isabella Ochola-Oyier & Pete C. Bull & Philip Bejon & Julian C. Rayner & Abdirahman I. Abdi, 2023. "Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42103-x
    DOI: 10.1038/s41467-023-42103-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42103-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42103-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akiko Takahashi & Ryo Okada & Koji Nagao & Yuka Kawamata & Aki Hanyu & Shin Yoshimoto & Masaki Takasugi & Sugiko Watanabe & Masato T Kanemaki & Chikashi Obuse & Eiji Hara, 2017. "Exosomes maintain cellular homeostasis by excreting harmful DNA from cells," Nature Communications, Nature, vol. 8(1), pages 1-16, August.
    2. Malcolm J. Gardner & Neil Hall & Eula Fung & Owen White & Matthew Berriman & Richard W. Hyman & Jane M. Carlton & Arnab Pain & Karen E. Nelson & Sharen Bowman & Ian T. Paulsen & Keith James & Jonathan, 2002. "Genome sequence of the human malaria parasite Plasmodium falciparum," Nature, Nature, vol. 419(6906), pages 498-511, October.
    3. Qingfeng Zhang & T. Nicolai Siegel & Rafael M. Martins & Fei Wang & Jun Cao & Qi Gao & Xiu Cheng & Lubin Jiang & Chung-Chau Hon & Christine Scheidig-Benatar & Hiroshi Sakamoto & Louise Turner & Anja T, 2014. "Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria," Nature, Nature, vol. 513(7518), pages 431-435, September.
    4. Heather J. Painter & Neo Christopher Chung & Aswathy Sebastian & Istvan Albert & John D. Storey & Manuel Llinás, 2018. "Genome-wide real-time in vivo transcriptional dynamics during Plasmodium falciparum blood-stage development," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Hyun Jung Hwang & Hongseok Ha & Ban Seok Lee & Bong Heon Kim & Hyun Kyu Song & Yoon Ki Kim, 2022. "LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Xiao Wang & Zhike Lu & Adrian Gomez & Gary C. Hon & Yanan Yue & Dali Han & Ye Fu & Marc Parisien & Qing Dai & Guifang Jia & Bing Ren & Tao Pan & Chuan He, 2014. "N6-methyladenosine-dependent regulation of messenger RNA stability," Nature, Nature, vol. 505(7481), pages 117-120, January.
    7. Brian M. Zid & Erin K. O’Shea, 2014. "Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast," Nature, Nature, vol. 514(7520), pages 117-121, October.
    8. Eliana Real & Virginia M. Howick & Farah A. Dahalan & Kathrin Witmer & Juliana Cudini & Clare Andradi-Brown & Joshua Blight & Mira S. Davidson & Sunil Kumar Dogga & Adam J. Reid & Jake Baum & Mara K. , 2021. "A single-cell atlas of Plasmodium falciparum transmission through the mosquito," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shujie Chen, & Lu Zhang & Mengjie Li & Ying Zhang & Meng Sun & Lingfang Wang & Jiebo Lin & Yun Cui & Qian Chen & Chenqi Jin & Xiang Li & Boya Wang & Hao Chen & Tianhua Zhou & Liangjing Wang & Chih-Hun, 2022. "Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Xiao Han & Lijuan Liu & Saihua Huang & Wenfeng Xiao & Yajing Gao & Weitao Zhou & Caiyan Zhang & Hongmei Zheng & Lan Yang & Xueru Xie & Qiuyan Liang & Zikun Tu & Hongmiao Yu & Jinrong Fu & Libo Wang & , 2023. "RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Buki Kwon & Mervin M. Fansler & Neil D. Patel & Jihye Lee & Weirui Ma & Christine Mayr, 2022. "Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Sakshi Jain & Lukasz Koziej & Panagiotis Poulis & Igor Kaczmarczyk & Monika Gaik & Michal Rawski & Namit Ranjan & Sebastian Glatt & Marina V. Rodnina, 2023. "Modulation of translational decoding by m6A modification of mRNA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Bin Li & Wen Xi & Ying Bai & Xue Liu & Yuan Zhang & Lu Li & Liang Bian & Chenchen Liu & Ying Tang & Ling Shen & Li Yang & Xiaochun Gu & Jian Xie & Zhongqiu Zhou & Yu Wang & Xiaoyu Yu & Jianhong Wang &, 2023. "FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Hyun Jung Hwang & Hongseok Ha & Ban Seok Lee & Bong Heon Kim & Hyun Kyu Song & Yoon Ki Kim, 2022. "LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Christopher P. Watkins & Wen Zhang & Adam C. Wylder & Christopher D. Katanski & Tao Pan, 2022. "A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Yan Xu & Zhuowei Zhou & Xinmei Kang & Lijie Pan & Chang Liu & Xiaoqi Liang & Jiajie Chu & Shuai Dong & Yanli Li & Qiuli Liu & Yuetong Sun & Shanshan Yu & Qi Zhang, 2022. "Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Prasun Kundu & Deboki Naskar & Shannon J. McKie & Sheena Dass & Usheer Kanjee & Viola Introini & Marcelo U. Ferreira & Pietro Cicuta & Manoj Duraisingh & Janet E. Deane & Julian C. Rayner, 2023. "The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Guoqiang Zhang & Yongru Xu & Xiaona Wang & Yuanxiang Zhu & Liangliang Wang & Wenxin Zhang & Yiru Wang & Yajie Gao & Xuna Wu & Ying Cheng & Qinmiao Sun & Dahua Chen, 2022. "Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Xiaojie Ma & Jie Cao & Ziyu Zhou & Yunkun Lu & Qin Li & Yan Jin & Guo Chen & Weiyun Wang & Wenyan Ge & Xi Chen & Zhensheng Hu & Xiao Shu & Qian Deng & Jiaqi Pu & Chengzhen Liang & Junfen Fu & Jianzhao, 2022. "N6-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Man Zhang & Yunping Zeng & Rong Peng & Jie Dong & Yelin Lan & Sujuan Duan & Zhenyi Chang & Jian Ren & Guanzheng Luo & Bing Liu & Kamil Růžička & Kewei Zhao & Hong-Bin Wang & Hong-Lei Jin, 2022. "N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Xiangbin Ruan & Kaining Hu & Xiaochang Zhang, 2023. "PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Alexander A. Morano & Rachel M. Rudlaff & Jeffrey D. Dvorin, 2023. "A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Yichi Niu & Jiayi Luo & Chenghang Zong, 2024. "Single-cell total-RNA profiling unveils regulatory hubs of transcription factors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Christopher J. Gilbert & Charles P. Rabolli & Volha A. Golubeva & Kristina M. Sattler & Meifang Wang & Arsh Ketabforoush & W. David Arnold & Christoph Lepper & Federica Accornero, 2024. "YTHDF2 governs muscle size through a targeted modulation of proteostasis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. An Xu & Mo Liu & Mo-Fan Huang & Yang Zhang & Ruifeng Hu & Julian A. Gingold & Ying Liu & Dandan Zhu & Chian-Shiu Chien & Wei-Chen Wang & Zian Liao & Fei Yuan & Chih-Wei Hsu & Jian Tu & Yao Yu & Taylor, 2023. "Rewired m6A epitranscriptomic networks link mutant p53 to neoplastic transformation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42103-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.