IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42076-x.html
   My bibliography  Save this article

Creating tunable lateral optical forces through multipolar interplay in single nanowires

Author

Listed:
  • Fan Nan

    (Jinan University)

  • Francisco J. Rodríguez-Fortuño

    (King’s College London)

  • Shaohui Yan

    (Chinese Academy of Sciences)

  • Jack J. Kingsley-Smith

    (King’s College London)

  • Jack Ng

    (Southern University of Science and Technology)

  • Baoli Yao

    (Chinese Academy of Sciences)

  • Zijie Yan

    (University of North Carolina at Chapel Hill)

  • Xiaohao Xu

    (Chinese Academy of Sciences)

Abstract

The concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength). The underlying physics is attributed to the multipolar interplay in the particle, leading to a reduction in symmetry. Direct experimental evidence of switchable LOF is captured by polarization-angle-controlled manipulation of single Ag nanowires using holographic optical tweezers. This work provides a minimalist paradigm to achieve interface-free LOF for optomechanical applications, such as optical sorting and light-driven micro/nanomotors.

Suggested Citation

  • Fan Nan & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Jack J. Kingsley-Smith & Jack Ng & Baoli Yao & Zijie Yan & Xiaohao Xu, 2023. "Creating tunable lateral optical forces through multipolar interplay in single nanowires," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42076-x
    DOI: 10.1038/s41467-023-42076-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42076-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42076-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. Svak & O. Brzobohatý & M. Šiler & P. Jákl & J. Kaňka & P. Zemánek & S. H. Simpson, 2018. "Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. S. B. Wang & C. T. Chan, 2014. "Lateral optical force on chiral particles near a surface," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    3. J.M. Geffrin & B. García-Cámara & R. Gómez-Medina & P. Albella & L.S. Froufe-Pérez & C. Eyraud & A. Litman & R. Vaillon & F. González & M. Nieto-Vesperinas & J.J. Sáenz & F. Moreno, 2012. "Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    4. Francisco J. Rodríguez-Fortuño & Nader Engheta & Alejandro Martínez & Anatoly V. Zayats, 2015. "Erratum: Lateral forces on circularly polarizable particles near a surface," Nature Communications, Nature, vol. 6(1), pages 1-1, December.
    5. Francisco J. Rodríguez-Fortuño & Nader Engheta & Alejandro Martínez & Anatoly V. Zayats, 2015. "Lateral forces on circularly polarizable particles near a surface," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    6. David G. Grier, 2003. "A revolution in optical manipulation," Nature, Nature, vol. 424(6950), pages 810-816, August.
    7. Konstantin Y. Bliokh & Aleksandr Y. Bekshaev & Franco Nori, 2014. "Extraordinary momentum and spin in evanescent waves," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Zhibin Li & Zhen Che & Wang Zhang & Yusen Zhang & Ziqi Lin & Zhan Lv & Chunling Wu & Longwei Han & Jieyuan Tang & Wenguo Zhu & Yi Xiao & Huadan Zheng & Yongchun Zhong & Zhe Chen & Jianhui Y, 2024. "Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiaohao Xu & Manuel Nieto-Vesperinas & Yuan Zhou & Yanan Zhang & Manman Li & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Baoli Yao, 2024. "Gradient and curl optical torques," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zhang & Zhibin Li & Zhen Che & Wang Zhang & Yusen Zhang & Ziqi Lin & Zhan Lv & Chunling Wu & Longwei Han & Jieyuan Tang & Wenguo Zhu & Yi Xiao & Huadan Zheng & Yongchun Zhong & Zhe Chen & Jianhui Y, 2024. "Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiaohao Xu & Manuel Nieto-Vesperinas & Yuan Zhou & Yanan Zhang & Manman Li & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Baoli Yao, 2024. "Gradient and curl optical torques," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Neng Wang & Jack Ng & Guo Ping Wang, 2024. "Morphology-independent general-purpose optical surface tractor beam," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Yijie Shen & Zhensong Wan & Xing Fu & Mali Gong & Xilin Yang & Ruoyang Qi & Mali Gong, 2018. "Recent Advances on Tunable Vortex Beam Devices for Biomedical Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(3), pages 7134-7138, September.
    6. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Yanhui Hu & Jack J. Kingsley-Smith & Maryam Nikkhou & James A. Sabin & Francisco J. Rodríguez-Fortuño & Xiaohao Xu & James Millen, 2023. "Structured transverse orbital angular momentum probed by a levitated optomechanical sensor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Wei Chen & Wang Zhang & Yuan Liu & Fan-Chao Meng & John M. Dudley & Yan-Qing Lu, 2022. "Time diffraction-free transverse orbital angular momentum beams," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    10. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Shubo Wang & Guanqing Zhang & Xulong Wang & Qing Tong & Jensen Li & Guancong Ma, 2021. "Spin-orbit interactions of transverse sound," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Djoko, M. & Tabi, Conrad Bertrand & Kofane, T.C., 2021. "Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic-quintic-septic complex Ginzburg-Landau e," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Wu, You & He, Shangling & Wu, Jinhong & Lin, Zejia & Chen, Libang & Qiu, Huixin & Liu, Yujun & Hong, Shihan & Chen, Kaihui & Fu, Xinming & Xu, Chuangjie & He, Yingji & Deng, Dongmei, 2021. "Autofocusing Pearcey-like vortex beam along a parabolic trajectory," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    17. Chih-Hao Huang & Boris Louis & Roger Bresolí-Obach & Tetsuhiro Kudo & Rafael Camacho & Ivan G. Scheblykin & Teruki Sugiyama & Johan Hofkens & Hiroshi Masuhara, 2022. "The primeval optical evolving matter by optical binding inside and outside the photon beam," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Ahmed H. Dorrah & Noah A. Rubin & Michele Tamagnone & Aun Zaidi & Federico Capasso, 2021. "Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    19. Li, Jun-Jie & Zhang, Hui-Cong, 2024. "Interaction-produced vector vortex chaoticons in nonlocal nonlinear media," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42076-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.