IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43068-7.html
   My bibliography  Save this article

Metafiber transforming arbitrarily structured light

Author

Listed:
  • Chenhao Li

    (Ludwig Maximilian University of Munich)

  • Torsten Wieduwilt

    (Leibniz Institute of Photonic Technology)

  • Fedja J. Wendisch

    (Ludwig Maximilian University of Munich)

  • Andrés Márquez

    (Universidad de Alicante, P.O. Box 99
    Universidad de Alicante, P.O. Box 99)

  • Leonardo de S. Menezes

    (Ludwig Maximilian University of Munich
    Universidade Federal de Pernambuco)

  • Stefan A. Maier

    (Ludwig Maximilian University of Munich
    Monash University
    Imperial College London)

  • Markus A. Schmidt

    (Leibniz Institute of Photonic Technology
    Abbe Center of Photonics and Faculty of Physics, FSU Jena
    Otto Schott Institute of Material Research, FSU Jena)

  • Haoran Ren

    (Monash University)

Abstract

Structured light has proven useful for numerous photonic applications. However, the current use of structured light in optical fiber science and technology is severely limited by mode mixing or by the lack of optical elements that can be integrated onto fiber end-faces for wavefront engineering, and hence generation of structured light is still handled outside the fiber via bulky optics in free space. We report a metafiber platform capable of creating arbitrarily structured light on the hybrid-order Poincaré sphere. Polymeric metasurfaces, with unleashed height degree of freedom and a greatly expanded 3D meta-atom library, were 3D laser nanoprinted and interfaced with polarization-maintaining single-mode fibers. Multiple metasurfaces were interfaced on the fiber end-faces, transforming the fiber output into different structured-light fields, including cylindrical vector beams, circularly polarized vortex beams, and arbitrary vector field. Our work provides a paradigm for advancing optical fiber science and technology towards fiber-integrated light shaping, which may find important applications in fiber communications, fiber lasers and sensors, endoscopic imaging, fiber lithography, and lab-on-fiber technology.

Suggested Citation

  • Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43068-7
    DOI: 10.1038/s41467-023-43068-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43068-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43068-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timo Gissibl & Simon Thiele & Alois Herkommer & Harald Giessen, 2016. "Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    2. Valentina Parigi & Vincenzo D’Ambrosio & Christophe Arnold & Lorenzo Marrucci & Fabio Sciarrino & Julien Laurat, 2015. "Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Haoran Ren & Gauthier Briere & Xinyuan Fang & Peinan Ni & Rajath Sawant & Sébastien Héron & Sébastien Chenot & Stéphane Vézian & Benjamin Damilano & Virginie Brändli & Stefan A. Maier & Patrice Geneve, 2019. "Metasurface orbital angular momentum holography," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Robert Fickler & Radek Lapkiewicz & Marcus Huber & Martin P.J. Lavery & Miles J. Padgett & Anton Zeilinger, 2014. "Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    5. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "Publisher Correction: An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    6. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Alois Mair & Alipasha Vaziri & Gregor Weihs & Anton Zeilinger, 2001. "Entanglement of the orbital angular momentum states of photons," Nature, Nature, vol. 412(6844), pages 313-316, July.
    8. Zengji Yue & Haoran Ren & Shibiao Wei & Jiao Lin & Min Gu, 2018. "Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    9. David G. Grier, 2003. "A revolution in optical manipulation," Nature, Nature, vol. 424(6950), pages 810-816, August.
    10. Mingze Liu & Pengcheng Huo & Wenqi Zhu & Cheng Zhang & Si Zhang & Maowen Song & Song Zhang & Qianwei Zhou & Lu Chen & Henri J. Lezec & Amit Agrawal & Yanqing Lu & Ting Xu, 2021. "Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Zhou & Hongtao Wang & Shuxi Liu & Hao Wang & John You En Chan & Cheng-Feng Pan & Daomu Zhao & Joel K. W. Yang & Cheng-Wei Qiu, 2024. "Arbitrary engineering of spatial caustics with 3D-printed metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei-Nan Ni & Pan Fu & Pei-Pei Chen & Chen Xu & Yi-Yang Xie & Patrice Genevet, 2022. "Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ahmed H. Dorrah & Noah A. Rubin & Michele Tamagnone & Aun Zaidi & Federico Capasso, 2021. "Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Fei Zhang & Yinghui Guo & Mingbo Pu & Lianwei Chen & Mingfeng Xu & Minghao Liao & Lanting Li & Xiong Li & Xiaoliang Ma & Xiangang Luo, 2023. "Meta-optics empowered vector visual cryptography for high security and rapid decryption," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Hammad Ahmed & Muhammad Afnan Ansari & Yan Li & Thomas Zentgraf & Muhammad Qasim Mehmood & Xianzhong Chen, 2023. "Dynamic control of hybrid grafted perfect vector vortex beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Ruixuan Zheng & Ruhao Pan & Guangzhou Geng & Qiang Jiang & Shuo Du & Lingling Huang & Changzhi Gu & Junjie Li, 2022. "Active multiband varifocal metalenses based on orbital angular momentum division multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Bo Dai & Liang Zhang & Chenglong Zhao & Hunter Bachman & Ryan Becker & John Mai & Ziao Jiao & Wei Li & Lulu Zheng & Xinjun Wan & Tony Jun Huang & Songlin Zhuang & Dawei Zhang, 2021. "Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Davide Pierangeli & Claudio Conti, 2023. "Single-shot polarimetry of vector beams by supervised learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Po-Han Huang & Miku Laakso & Pierre Edinger & Oliver Hartwig & Georg S. Duesberg & Lee-Lun Lai & Joachim Mayer & Johan Nyman & Carlos Errando-Herranz & Göran Stemme & Kristinn B. Gylfason & Frank Nikl, 2023. "Three-dimensional printing of silica glass with sub-micrometer resolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Jie Wang & Jin Chen & Feilong Yu & Rongsheng Chen & Jiuxu Wang & Zengyue Zhao & Xuenan Li & Huaizhong Xing & Guanhai Li & Xiaoshuang Chen & Wei Lu, 2024. "Unlocking ultra-high holographic information capacity through nonorthogonal polarization multiplexing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Cafaro, Carlo, 2017. "Geometric algebra and information geometry for quantum computational software," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 154-196.
    16. Li, Jun-Jie & Zhang, Hui-Cong, 2024. "Interaction-produced vector vortex chaoticons in nonlocal nonlinear media," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Raoul Trines & Holger Schmitz & Martin King & Paul McKenna & Robert Bingham, 2024. "Laser harmonic generation with independent control of frequency and orbital angular momentum," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xuyue Guo & Peng Li & Jinzhan Zhong & Dandan Wen & Bingyan Wei & Sheng Liu & Shuxia Qi & Jianlin Zhao, 2022. "Stokes meta-hologram toward optical cryptography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yijie Shen & Zhensong Wan & Xing Fu & Mali Gong & Xilin Yang & Ruoyang Qi & Mali Gong, 2018. "Recent Advances on Tunable Vortex Beam Devices for Biomedical Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(3), pages 7134-7138, September.
    20. Sihong Lei & Shiqi Xia & Daohong Song & Jingjun Xu & Hrvoje Buljan & Zhigang Chen, 2024. "Optical vortex ladder via Sisyphus pumping of Pseudospin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43068-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.