IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms10263.html
   My bibliography  Save this article

Erratum: Lateral forces on circularly polarizable particles near a surface

Author

Listed:
  • Francisco J. Rodríguez-Fortuño
  • Nader Engheta
  • Alejandro Martínez
  • Anatoly V. Zayats

Abstract

Nature Communications 6: Article number: 8799 (2015); Published 19 November 2015; Updated 14 December 2015 Due to errors in the production process data were missing in the original version of Fig. 4b. The correct version of this figure appears below. Figure 4

Suggested Citation

  • Francisco J. Rodríguez-Fortuño & Nader Engheta & Alejandro Martínez & Anatoly V. Zayats, 2015. "Erratum: Lateral forces on circularly polarizable particles near a surface," Nature Communications, Nature, vol. 6(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10263
    DOI: 10.1038/ncomms10263
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10263
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neng Wang & Jack Ng & Guo Ping Wang, 2024. "Morphology-independent general-purpose optical surface tractor beam," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Fan Nan & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Jack J. Kingsley-Smith & Jack Ng & Baoli Yao & Zijie Yan & Xiaohao Xu, 2023. "Creating tunable lateral optical forces through multipolar interplay in single nanowires," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yu Zhang & Zhibin Li & Zhen Che & Wang Zhang & Yusen Zhang & Ziqi Lin & Zhan Lv & Chunling Wu & Longwei Han & Jieyuan Tang & Wenguo Zhu & Yi Xiao & Huadan Zheng & Yongchun Zhong & Zhe Chen & Jianhui Y, 2024. "Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xiaohao Xu & Manuel Nieto-Vesperinas & Yuan Zhou & Yanan Zhang & Manman Li & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Baoli Yao, 2024. "Gradient and curl optical torques," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.