IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221001195.html
   My bibliography  Save this article

Actualization of an efficient throttleable laser propulsion mode

Author

Listed:
  • Zhang, Haonan
  • Duan, Buren
  • Wu, Lizhi
  • Hua, Zuohao
  • Bao, Zijing
  • Guo, Ning
  • Ye, Yinghua
  • Galfetti, Luciano
  • DeLuca, Luigi T.
  • Shen, Ruiqi

Abstract

Conventional propulsion systems are difficult to change between propelling and non-propelling modes. Throttleable propulsion that results from the control of the input energy is a significant further step toward application in various space missions. We present our work on a novel propulsion mode producing throttleable thrust under the control of our low power CW laser. This photosensitive propellant is fully capable of repeated ignition and interruption, while generating gases that are more environmentally friendly with decreased solid residues. Laser ignition and combustion performance of such modes are characterized. Laser-controlled combustion behavior examples are shown and discussed. These results show potential applications in many aspects of space missions, such as maneuvers in space, attitude control, orbit raising and microsatellite deorbiting.

Suggested Citation

  • Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001195
    DOI: 10.1016/j.energy.2021.119870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Yinhu & Wang, Qiang & Zhang, Pengyuan & Liu, Congcong & Lu, Xiaofeng & Wang, Quanhai, 2020. "Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames," Energy, Elsevier, vol. 193(C).
    2. Lee, Seungro & Ha, Heonrok & Dunn-Rankin, Derek & Kwon, Oh Chae, 2017. "Effects of pressure on structure and extinction limits of counterflow nonpremixed water-laden methane/air flames," Energy, Elsevier, vol. 134(C), pages 545-553.
    3. Sziroczak, David & Jankovics, Istvan & Gal, Istvan & Rohacs, Daniel, 2020. "Conceptual design of small aircraft with hybrid-electric propulsion systems," Energy, Elsevier, vol. 204(C).
    4. Sliwinski, Jacob & Gardi, Alessandro & Marino, Matthew & Sabatini, Roberto, 2017. "Hybrid-electric propulsion integration in unmanned aircraft," Energy, Elsevier, vol. 140(P2), pages 1407-1416.
    5. David G. Grier, 2003. "A revolution in optical manipulation," Nature, Nature, vol. 424(6950), pages 810-816, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).
    2. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    3. Bravo, Guillem Moreno & Praliyev, Nurgeldy & Veress, Árpád, 2021. "Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft," Energy, Elsevier, vol. 214(C).
    4. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    5. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    6. Kiani, Mehrdad & Houshfar, Ehsan & Ashjaee, Mehdi, 2019. "Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners," Energy, Elsevier, vol. 170(C), pages 507-520.
    7. Kang, Yinhu & Wang, Qiang & Zhang, Pengyuan & Liu, Congcong & Lu, Xiaofeng & Wang, Quanhai, 2020. "Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames," Energy, Elsevier, vol. 193(C).
    8. Wang, Tao & Zhang, Yu & Yin, Zhao & Zhang, Hua-liang & Qian, Ye-jian, 2023. "Energy analysis and control scheme optimizations for a recuperated gas turbine with variable power offtakes/inputs," Energy, Elsevier, vol. 285(C).
    9. Ahmed H. Dorrah & Noah A. Rubin & Michele Tamagnone & Aun Zaidi & Federico Capasso, 2021. "Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    12. Yijie Shen & Zhensong Wan & Xing Fu & Mali Gong & Xilin Yang & Ruoyang Qi & Mali Gong, 2018. "Recent Advances on Tunable Vortex Beam Devices for Biomedical Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 9(3), pages 7134-7138, September.
    13. Burston, Martin & Ranasinghe, Kavindu & Gardi, Alessandro & Parezanović, Vladimir & Ajaj, Rafic & Sabatini, Roberto, 2022. "Design principles and digital control of advanced distributed propulsion systems," Energy, Elsevier, vol. 241(C).
    14. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    15. Zaid O. Alrayes & Mohamed Gadalla, 2021. "Development of a Flexible Framework Multi-Design Optimization Scheme for a Hand Launched Fuel Cell-Powered UAV," Energies, MDPI, vol. 14(10), pages 1-27, May.
    16. Yang, Xiehe & Wang, Tiantian & Zhang, Yang & Zhang, Hai & Wu, Yuxin & Zhang, Jiansheng, 2022. "Hydrogen effect on flame extinction of hydrogen-enriched methane/air premixed flames: An assessment from the combustion safety point of view," Energy, Elsevier, vol. 239(PC).
    17. Wei Chen & Wang Zhang & Yuan Liu & Fan-Chao Meng & John M. Dudley & Yan-Qing Lu, 2022. "Time diffraction-free transverse orbital angular momentum beams," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Rohacs, J. & Kale, U. & Rohacs, D., 2022. "Radically new solutions for reducing the energy use by future aircraft and their operations," Energy, Elsevier, vol. 239(PE).
    19. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    20. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.