IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07866-8.html
   My bibliography  Save this article

Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap

Author

Listed:
  • V. Svak

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

  • O. Brzobohatý

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

  • M. Šiler

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

  • P. Jákl

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

  • J. Kaňka

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

  • P. Zemánek

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

  • S. H. Simpson

    (The Czech Academy of Sciences, Institute of Scientific Instruments)

Abstract

We provide a vivid demonstration of the mechanical effect of transverse spin momentum in an optical beam in free space. This component of the Poynting momentum was previously thought to be virtual, and unmeasurable. Here, its effect is revealed in the inertial motion of a probe particle in a circularly polarized Gaussian trap, in vacuum. Transverse spin forces combine with thermal fluctuations to induce a striking range of non-equilibrium phenomena. With increasing beam power we observe (i) growing departures from energy equipartition, (ii) the formation of coherent, thermally excited orbits and, ultimately, (iii) the ejection of the particle from the trap. As well as corroborating existing measurements of spin momentum, our results reveal its dynamic effect. We show how the under-damped motion of probe particles in structured light fields can expose the nature and morphology of optical momentum flows, and provide a testbed for elementary non-equilibrium statistical mechanics.

Suggested Citation

  • V. Svak & O. Brzobohatý & M. Šiler & P. Jákl & J. Kaňka & P. Zemánek & S. H. Simpson, 2018. "Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07866-8
    DOI: 10.1038/s41467-018-07866-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07866-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07866-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhui Hu & Jack J. Kingsley-Smith & Maryam Nikkhou & James A. Sabin & Francisco J. Rodríguez-Fortuño & Xiaohao Xu & James Millen, 2023. "Structured transverse orbital angular momentum probed by a levitated optomechanical sensor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Fan Nan & Francisco J. Rodríguez-Fortuño & Shaohui Yan & Jack J. Kingsley-Smith & Jack Ng & Baoli Yao & Zijie Yan & Xiaohao Xu, 2023. "Creating tunable lateral optical forces through multipolar interplay in single nanowires," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yu Zhang & Zhibin Li & Zhen Che & Wang Zhang & Yusen Zhang & Ziqi Lin & Zhan Lv & Chunling Wu & Longwei Han & Jieyuan Tang & Wenguo Zhu & Yi Xiao & Huadan Zheng & Yongchun Zhong & Zhe Chen & Jianhui Y, 2024. "Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07866-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.