IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40651-w.html
   My bibliography  Save this article

Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule

Author

Listed:
  • Matteo Saponati

    (Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society
    Max-Planck Institute for Brain Research
    Radboud University)

  • Martin Vinck

    (Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society
    Radboud University)

Abstract

Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on predictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory signalling and recall in a recurrent network. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.

Suggested Citation

  • Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40651-w
    DOI: 10.1038/s41467-023-40651-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40651-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40651-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajiv K. Mishra & Sooyun Kim & Segundo J. Guzman & Peter Jonas, 2016. "Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    2. Michael J. Berry & Iman H. Brivanlou & Thomas A. Jordan & Markus Meister, 1999. "Anticipation of moving stimuli by the retina," Nature, Nature, vol. 398(6725), pages 334-338, March.
    3. Jason J. Moore & Jesse D. Cushman & Lavanya Acharya & Briana Popeney & Mayank R. Mehta, 2021. "Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation," Nature, Nature, vol. 599(7885), pages 442-448, November.
    4. Gina G. Turrigiano & Kenneth R. Leslie & Niraj S. Desai & Lana C. Rutherford & Sacha B. Nelson, 1998. "Activity-dependent scaling of quantal amplitude in neocortical neurons," Nature, Nature, vol. 391(6670), pages 892-896, February.
    5. Nace L. Golding & Nathan P. Staff & Nelson Spruston, 2002. "Dendritic spikes as a mechanism for cooperative long-term potentiation," Nature, Nature, vol. 418(6895), pages 326-331, July.
    6. Sébastien Royer & Denis Paré, 2003. "Conservation of total synaptic weight through balanced synaptic depression and potentiation," Nature, Nature, vol. 422(6931), pages 518-522, April.
    7. Guillaume Bellec & Franz Scherr & Anand Subramoney & Elias Hajek & Darjan Salaj & Robert Legenstein & Wolfgang Maass, 2020. "A solution to the learning dilemma for recurrent networks of spiking neurons," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    8. Friedemann Zenke & Everton J. Agnes & Wulfram Gerstner, 2015. "Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    2. Giorgia Dellaferrera & Stanisław Woźniak & Giacomo Indiveri & Angeliki Pantazi & Evangelos Eleftheriou, 2022. "Introducing principles of synaptic integration in the optimization of deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Douglas Feitosa Tomé & Sadra Sadeh & Claudia Clopath, 2022. "Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Niranjan Chakravarthy & Shivkumar Sabesan & Kostas Tsakalis & Leon Iasemidis, 2009. "Controlling epileptic seizures in a neural mass model," Journal of Combinatorial Optimization, Springer, vol. 17(1), pages 98-116, January.
    6. Guillaume Etter & Suzanne Veldt & Jisoo Choi & Sylvain Williams, 2023. "Optogenetic frequency scrambling of hippocampal theta oscillations dissociates working memory retrieval from hippocampal spatiotemporal codes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    8. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    9. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    10. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    12. Weston Cox & Brian J Fischer, 2015. "Optimal Prediction of Moving Sound Source Direction in the Owl," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-20, July.
    13. Juan Prada & Manju Sasi & Corinna Martin & Sibylle Jablonka & Thomas Dandekar & Robert Blum, 2018. "An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’ activity in calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-34, March.
    14. Kendra S Burbank, 2015. "Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-25, December.
    15. Nicholas Alonso & Jeffrey L. Krichmar, 2024. "A sparse quantized hopfield network for online-continual memory," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Daniel Müller-Komorowska & Baris Kuru & Heinz Beck & Oliver Braganza, 2023. "Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.
    19. John A. Gaynes & Samuel A. Budoff & Michael J. Grybko & Joshua B. Hunt & Alon Poleg-Polsky, 2022. "Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40651-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.