IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3001383.html
   My bibliography  Save this article

Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum

Author

Listed:
  • Suzanne van der Veldt
  • Guillaume Etter
  • Coralie-Anne Mosser
  • Frédéric Manseau
  • Sylvain Williams

Abstract

The hippocampal spatial code’s relevance for downstream neuronal populations—particularly its major subcortical output the lateral septum (LS)—is still poorly understood. Here, using calcium imaging combined with unbiased analytical methods, we functionally characterized and compared the spatial tuning of LS GABAergic cells to those of dorsal CA3 and CA1 cells. We identified a significant number of LS cells that are modulated by place, speed, acceleration, and direction, as well as conjunctions of these properties, directly comparable to hippocampal CA1 and CA3 spatially modulated cells. Interestingly, Bayesian decoding of position based on LS spatial cells reflected the animal’s location as accurately as decoding using the activity of hippocampal pyramidal cells. A portion of LS cells showed stable spatial codes over the course of multiple days, potentially reflecting long-term episodic memory. The distributions of cells exhibiting these properties formed gradients along the anterior–posterior and dorsal–ventral axes of the LS, directly reflecting the topographical organization of hippocampal inputs to the LS. Finally, we show using transsynaptic tracing that LS neurons receiving CA3 and CA1 excitatory input send projections to the hypothalamus and medial septum, regions that are not targeted directly by principal cells of the dorsal hippocampus. Together, our findings demonstrate that the LS accurately and robustly represents spatial, directional as well as self-motion information and is uniquely positioned to relay this information from the hippocampus to its downstream regions, thus occupying a key position within a distributed spatial memory network.Calcium imaging of neurons in freely behaving mice reveals how the lateral septum, the main output of the hippocampal place cells, effectively represents information about not only location, but also head direction and self-movement, and may be pivotal in sending this information to downstream brain regions.

Suggested Citation

  • Suzanne van der Veldt & Guillaume Etter & Coralie-Anne Mosser & Frédéric Manseau & Sylvain Williams, 2021. "Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum," PLOS Biology, Public Library of Science, vol. 19(8), pages 1-36, August.
  • Handle: RePEc:plo:pbio00:3001383
    DOI: 10.1371/journal.pbio.3001383
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001383
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001383&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3001383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Müller-Komorowska & Baris Kuru & Heinz Beck & Oliver Braganza, 2023. "Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Solomiia Korchynska & Patrick Rebernik & Marko Pende & Laura Boi & Alán Alpár & Ramon Tasan & Klaus Becker & Kira Balueva & Saiedeh Saghafi & Peer Wulff & Tamas L. Horvath & Gilberto Fisone & Hans-Ulr, 2022. "A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Guillaume Etter & Suzanne Veldt & Jisoo Choi & Sylvain Williams, 2023. "Optogenetic frequency scrambling of hippocampal theta oscillations dissociates working memory retrieval from hippocampal spatiotemporal codes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3001383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.