IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41396-2.html
   My bibliography  Save this article

Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte

Author

Listed:
  • Hai-Gang Qin

    (Southern University of Science and Technology)

  • Yun-Fan Du

    (Southern University of Science and Technology)

  • Yi-Yang Bai

    (Southern University of Science and Technology)

  • Fu-Zhi Li

    (Southern University of Science and Technology)

  • Xian Yue

    (Southern University of Science and Technology)

  • Hao Wang

    (Southern University of Science and Technology)

  • Jian-Zhao Peng

    (Southern University of Science and Technology)

  • Jun Gu

    (Southern University of Science and Technology)

Abstract

Electrochemical CO2 reduction in acidic electrolytes is a promising strategy to achieve high utilization efficiency of CO2. Although alkali cations in acidic electrolytes play a vital role in suppressing hydrogen evolution and promoting CO2 reduction, they also cause precipitation of bicarbonate on the gas diffusion electrode (GDE), flooding of electrolyte through the GDE, and drift of the electrolyte pH. In this work, we realize the electroreduction of CO2 in a metal cation-free acidic electrolyte by covering the catalyst with cross-linked poly-diallyldimethylammonium chloride. This polyelectrolyte provides a high density of cationic sites immobilized on the surface of the catalyst, which suppresses the mass transport of H+ and modulates the interfacial field strength. By adopting this strategy, the Faradaic efficiency (FE) of CO reaches 95 ± 3% with the Ag catalyst and the FE of formic acid reaches 76 ± 3% with the In catalyst in a 1.0 pH electrolyte in a flow cell. More importantly, with the metal cation-free acidic electrolyte the amount of electrolyte flooding through the GDE is decreased to 2.5 ± 0.6% of that with alkali cation-containing acidic electrolyte, and the FE of CO maintains above 80% over 36 h of operation at −200 mA·cm−2.

Suggested Citation

  • Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41396-2
    DOI: 10.1038/s41467-023-41396-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41396-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41396-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chanyeon Kim & Justin C. Bui & Xiaoyan Luo & Jason K. Cooper & Ahmet Kusoglu & Adam Z. Weber & Alexis T. Bell, 2021. "Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings," Nature Energy, Nature, vol. 6(11), pages 1026-1034, November.
    2. Stefan Ringe & Carlos G. Morales-Guio & Leanne D. Chen & Meredith Fields & Thomas F. Jaramillo & Christopher Hahn & Karen Chan, 2020. "Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Mariana C. O. Monteiro & Matthew F. Philips & Klaas Jan P. Schouten & Marc T. M. Koper, 2021. "Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Zesong Ma & Zhilong Yang & Wenchuan Lai & Qiyou Wang & Yan Qiao & Haolan Tao & Cheng Lian & Min Liu & Chao Ma & Anlian Pan & Hongwen Huang, 2022. "CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Joshua A. Rabinowitz & Matthew W. Kanan, 2020. "The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Huiying Deng & Tingting Liu & Wenshan Zhao & Jundong Wang & Yuesheng Zhang & Shuzhen Zhang & Yu Yang & Chao Yang & Wenzhi Teng & Zhuo Chen & Gengfeng Zheng & Fengwang Li & Yaqiong Su & Jingshu Hui & Y, 2024. "Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Shoujie Li & Xiao Dong & Gangfeng Wu & Yanfang Song & Jianing Mao & Aohui Chen & Chang Zhu & Guihua Li & Yiheng Wei & Xiaohu Liu & Jiangjiang Wang & Wei Chen & Wei Wei, 2024. "Ampere-level CO2 electroreduction with single-pass conversion exceeding 85% in acid over silver penetration electrodes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Mengran Li & Eric W. Lees & Wen Ju & Siddhartha Subramanian & Kailun Yang & Justin C. Bui & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Joost Middelkoop & Peter Strasser & Adam Z. Weber & A, 2024. "Local ionic transport enables selective PGM-free bipolar membrane electrode assembly," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ruijuan Zhao & Lei Li & Qianbao Wu & Wei Luo & Qiu Zhang & Chunhua Cui, 2024. "Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Subhabrata Mukhopadhyay & Muhammad Saad Naeem & G. Shiva Shanker & Arnab Ghatak & Alagar R. Kottaichamy & Ran Shimoni & Liat Avram & Itamar Liberman & Rotem Balilty & Raya Ifraemov & Illya Rozenberg &, 2024. "Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Wei Chen & Liang Zhang & Leitao Xu & Yuanqing He & Huan Pang & Shuangyin Wang & Yuqin Zou, 2024. "Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Jongyoun Kim & Taemin Lee & Hyun Dong Jung & Minkyoung Kim & Jungsu Eo & Byeongjae Kang & Hyeonwoo Jung & Jaehyoung Park & Daewon Bae & Yujin Lee & Sojung Park & Wooyul Kim & Seoin Back & Youngu Lee &, 2024. "Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Xueping Qin & Heine A. Hansen & Karoliina Honkala & Marko M. Melander, 2023. "Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Jiaqi Feng & Limin Wu & Xinning Song & Libing Zhang & Shunhan Jia & Xiaodong Ma & Xingxing Tan & Xinchen Kang & Qinggong Zhu & Xiaofu Sun & Buxing Han, 2024. "CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Bin Liu & Tuo Wang & Shujie Wang & Gong Zhang & Dazhong Zhong & Tenghui Yuan & Hao Dong & Bo Wu & Jinlong Gong, 2022. "Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41396-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.