IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56977-6.html
   My bibliography  Save this article

Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Author

Listed:
  • Zhitong Wang

    (Hainan University
    1037 Luoyu Rd)

  • Dongyu Liu

    (HSE University)

  • Chenfeng Xia

    (1037 Luoyu Rd)

  • Xiaodong Shi

    (Hainan University)

  • Yansong Zhou

    (Fudan University)

  • Qiuwen Liu

    (Central South University)

  • Jiangtao Huang

    (Central South University)

  • Haiyan Wu

    (Hainan University)

  • Deyu Zhu

    (1037 Luoyu Rd)

  • Shuyu Zhang

    (Fudan University)

  • Jing Li

    (Hainan University)

  • Peilin Deng

    (Hainan University)

  • Andrey S. Vasenko

    (HSE University
    Donostia International Physics Center (DIPC))

  • Bao Yu Xia

    (1037 Luoyu Rd)

  • Xinlong Tian

    (Hainan University)

Abstract

Acidic electrochemical CO2 conversion is a promising alternative to overcome the low CO2 utilization. However, over-reliance on highly concentrated K+ to inhibit the hydrogen evolution reaction also causes (bi)carbonate precipitation to interfere with catalytic performance. In this work, under the screening and guidance of computational simulations, we present a carbon coated tip-like In2O3 electrocatalyst for stable and efficient acidic CO2 conversion to synthesize formic acid (HCOOH) with low K+ concentration. The carbon layer protects the oxidized In species with higher intrinsic activity from reductive corrosion, and also peripherally formulates a tip-induced electric field to regulate the adverse H+ attraction and desirable K+ enrichment. In an acidic electrolyte at pH 0.94, only 0.1 M low K+ is required to achieve a Faradaic efficiency (FE) of 98.9% at 300 mA cm−2 for HCOOH and a long-time stability of over100 h. By up-scaling the electrode into a 25 cm2 electrolyzer setup, a total current of 7 A is recorded to sustain a durable HCOOH production of 291.6 mmol L−1 h−1.

Suggested Citation

  • Zhitong Wang & Dongyu Liu & Chenfeng Xia & Xiaodong Shi & Yansong Zhou & Qiuwen Liu & Jiangtao Huang & Haiyan Wu & Deyu Zhu & Shuyu Zhang & Jing Li & Peilin Deng & Andrey S. Vasenko & Bao Yu Xia & Xin, 2025. "Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56977-6
    DOI: 10.1038/s41467-025-56977-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56977-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56977-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Publisher Correction: Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 627(8005), pages 13-13, March.
    2. Adnan Ozden & Jun Li & Sharath Kandambeth & Xiao-Yan Li & Shijie Liu & Osama Shekhah & Pengfei Ou & Y. Zou Finfrock & Ya-Kun Wang & Tartela Alkayyali & F. Pelayo García de Arquer & Vinayak S. Kale & P, 2023. "Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption," Nature Energy, Nature, vol. 8(2), pages 179-190, February.
    3. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 626(7997), pages 86-91, February.
    6. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Mingxu Sun & Jiamin Cheng & Miho Yamauchi, 2024. "Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Dong & Ran Luo & Gong Zhang & Lulu Li & Chaoxi Wang & Guodong Sun & Hongyi Wang & Jiachang Liu & Tuo Wang & Zhi-Jian Zhao & Peng Zhang & Jinlong Gong, 2025. "Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Huiying Deng & Tingting Liu & Wenshan Zhao & Jundong Wang & Yuesheng Zhang & Shuzhen Zhang & Yu Yang & Chao Yang & Wenzhi Teng & Zhuo Chen & Gengfeng Zheng & Fengwang Li & Yaqiong Su & Jingshu Hui & Y, 2024. "Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Weisong Liu & Kuncheng Zhang & Jiang Liu & Yuanming Wang & Meng Zhang & Huijuan Cui & Junsong Sun & Lingling Zhang, 2024. "Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Lei Chen & Junmei Chen & Weiwei Fu & Jiayi Chen & Di Wang & Yukun Xiao & Shibo Xi & Yongfei Ji & Lei Wang, 2024. "Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Simon Rufer & Michael P. Nitzsche & Sanjay Garimella & Jack R. Lake & Kripa K. Varanasi, 2024. "Hierarchically conductive electrodes unlock stable and scalable CO2 electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Junmei Chen & Haoran Qiu & Yilin Zhao & Haozhou Yang & Lei Fan & Zhihe Liu & ShiBo Xi & Guangtai Zheng & Jiayi Chen & Lei Chen & Ya Liu & Liejin Guo & Lei Wang, 2024. "Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Doris Segets & Corina Andronescu & Ulf-Peter Apfel, 2023. "Accelerating CO2 electrochemical conversion towards industrial implementation," Nature Communications, Nature, vol. 14(1), pages 1-5, December.
    11. Hugo-Pieter Iglesias van Montfort & Mengran Li & Erdem Irtem & Maryam Abdinejad & Yuming Wu & Santosh K. Pal & Mark Sassenburg & Davide Ripepi & Siddhartha Subramanian & Jasper Biemolt & Thomas E. Ruf, 2023. "Non-invasive current collectors for improved current-density distribution during CO2 electrolysis on super-hydrophobic electrodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Meng Wang & Bingqing Wang & Jiguang Zhang & Shibo Xi & Ning Ling & Ziyu Mi & Qin Yang & Mingsheng Zhang & Wan Ru Leow & Jia Zhang & Yanwei Lum, 2024. "Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Shashwati C. Cunha & Joaquin Resasco, 2023. "Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    14. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Zhonghao Tan & Jianling Zhang & Yisen Yang & Jiajun Zhong & Yingzhe Zhao & Yunan Teng & Buxing Han & Zhongjun Chen, 2025. "Polymeric ionic liquid promotes acidic electrocatalytic CO2 conversion to multicarbon products with ampere level current on Cu," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Liangyiqun Xie & Yanming Cai & Yujing Jiang & Meikun Shen & Jason Chun-Ho Lam & Jun-jie Zhu & Wenlei Zhu, 2024. "Direct low concentration CO2 electroreduction to multicarbon products via rate-determining step tuning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56977-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.