IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39351-2.html
   My bibliography  Save this article

Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability

Author

Listed:
  • Yan Lin

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Tuo Wang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations
    International Campus of Tianjin University)

  • Lili Zhang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Gong Zhang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Lulu Li

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Qingfeng Chang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Zifan Pang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Hui Gao

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Kai Huang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    International Campus of Tianjin University)

  • Peng Zhang

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations
    International Campus of Tianjin University)

  • Zhi-Jian Zhao

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Chunlei Pei

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Jinlong Gong

    (Tianjin University
    Collaborative Innovation Center for Chemical Science & Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

Abstract

The mechanism of how interfacial wettability impacts the CO2 electroreduction pathways to ethylene and ethanol remains unclear. This paper describes the design and realization of controllable equilibrium of kinetic-controlled *CO and *H via modifying alkanethiols with different alkyl chain lengths to reveal its contribution to ethylene and ethanol pathways. Characterization and simulation reveal that the mass transport of CO2 and H2O is related with interfacial wettability, which may result in the variation of kinetic-controlled *CO and *H ratio, which affects ethylene and ethanol pathways. Through modulating the hydrophilic interface to superhydrophobic interface, the reaction limitation shifts from insufficient supply of kinetic-controlled *CO to that of *H. The ethanol to ethylene ratio can be continuously tailored in a wide range from 0.9 to 1.92, with remarkable Faradaic efficiencies toward ethanol and multi-carbon (C2+) products up to 53.7% and 86.1%, respectively. A C2+ Faradaic efficiency of 80.3% can be achieved with a high C2+ partial current density of 321 mA cm−2, which is among the highest selectivity at such current densities.

Suggested Citation

  • Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39351-2
    DOI: 10.1038/s41467-023-39351-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39351-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39351-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chanyeon Kim & Justin C. Bui & Xiaoyan Luo & Jason K. Cooper & Ahmet Kusoglu & Adam Z. Weber & Alexis T. Bell, 2021. "Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings," Nature Energy, Nature, vol. 6(11), pages 1026-1034, November.
    3. Mingchuan Luo & Ziyun Wang & Yuguang C. Li & Jun Li & Fengwang Li & Yanwei Lum & Dae-Hyun Nam & Bin Chen & Joshua Wicks & Aoni Xu & Taotao Zhuang & Wan Ru Leow & Xue Wang & Cao-Thang Dinh & Ying Wang , 2019. "Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Jing Li & Xiaoxia Chang & Haochen Zhang & Arnav S. Malkani & Mu-jeng Cheng & Bingjun Xu & Qi Lu, 2021. "Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Fengwang Li & Arnaud Thevenon & Alonso Rosas-Hernández & Ziyun Wang & Yilin Li & Christine M. Gabardo & Adnan Ozden & Cao Thang Dinh & Jun Li & Yuhang Wang & Jonathan P. Edwards & Yi Xu & Christopher , 2020. "Molecular tuning of CO2-to-ethylene conversion," Nature, Nature, vol. 577(7791), pages 509-513, January.
    6. Zhuo Xing & Lin Hu & Donald S. Ripatti & Xun Hu & Xiaofeng Feng, 2021. "Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Run Shi & Jiahao Guo & Xuerui Zhang & Geoffrey I. N. Waterhouse & Zhaojun Han & Yunxuan Zhao & Lu Shang & Chao Zhou & Lei Jiang & Tierui Zhang, 2020. "Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Wenchao Ma & Shunji Xie & Xia-Guang Zhang & Fanfei Sun & Jincan Kang & Zheng Jiang & Qinghong Zhang & De-Yin Wu & Ye Wang, 2019. "Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongyoun Kim & Taemin Lee & Hyun Dong Jung & Minkyoung Kim & Jungsu Eo & Byeongjae Kang & Hyeonwoo Jung & Jaehyoung Park & Daewon Bae & Yujin Lee & Sojung Park & Wooyul Kim & Seoin Back & Youngu Lee &, 2024. "Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siqi Zhao & Oliver Christensen & Zhaozong Sun & Hongqing Liang & Alexander Bagger & Kristian Torbensen & Pegah Nazari & Jeppe Vang Lauritsen & Steen Uttrup Pedersen & Jan Rossmeisl & Kim Daasbjerg, 2023. "Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jongyoun Kim & Taemin Lee & Hyun Dong Jung & Minkyoung Kim & Jungsu Eo & Byeongjae Kang & Hyeonwoo Jung & Jaehyoung Park & Daewon Bae & Yujin Lee & Sojung Park & Wooyul Kim & Seoin Back & Youngu Lee &, 2024. "Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chen, Jiateng & Xu, Le & Shen, Boxiong, 2024. "Recent advances in tandem electrocatalysis of carbon dioxide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Jie Ding & Fuhua Li & Xinyi Ren & Yuhang Liu & Yifan Li & Zheng Shen & Tian Wang & Weijue Wang & Yang-Gang Wang & Yi Cui & Hongbin Yang & Tianyu Zhang & Bin Liu, 2024. "Molecular tuning boosts asymmetric C-C coupling for CO conversion to acetate," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Ruijuan Zhao & Lei Li & Qianbao Wu & Wei Luo & Qiu Zhang & Chunhua Cui, 2024. "Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Huali Wu & Ji Li & Kun Qi & Yang Zhang & Eddy Petit & Wensen Wang & Valérie Flaud & Nicolas Onofrio & Bertrand Rebiere & Lingqi Huang & Chrystelle Salameh & Luc Lajaunie & Philippe Miele & Damien Voir, 2021. "Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Wanyu Deng & Peng Zhang & Yu Qiao & Georg Kastlunger & Nitish Govindarajan & Aoni Xu & Ib Chorkendorff & Brian Seger & Jinlong Gong, 2024. "Unraveling the rate-determining step of C2+ products during electrochemical CO reduction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Pengtang Wang & Hao Yang & Cheng Tang & Yu Wu & Yao Zheng & Tao Cheng & Kenneth Davey & Xiaoqing Huang & Shi-Zhang Qiao, 2022. "Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Jiajie Hou & Bingjun Xu & Qi Lu, 2024. "Influence of electric double layer rigidity on CO adsorption and electroreduction rate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Wei Chen & Liang Zhang & Leitao Xu & Yuanqing He & Huan Pang & Shuangyin Wang & Yuqin Zou, 2024. "Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39351-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.