IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13777-z.html
   My bibliography  Save this article

Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold

Author

Listed:
  • Stefan Ringe

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Carlos G. Morales-Guio

    (Stanford University
    SLAC National Accelerator Laboratory
    University of California)

  • Leanne D. Chen

    (University of Guelph)

  • Meredith Fields

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Thomas F. Jaramillo

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Christopher Hahn

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Karen Chan

    (Technical University of Denmark)

Abstract

Electrochemical CO$$_{2}$$2 reduction is a potential route to the sustainable production of valuable fuels and chemicals. Here, we perform CO$$_{2}$$2 reduction experiments on Gold at neutral to acidic pH values to elucidate the long-standing controversy surrounding the rate-limiting step. We find the CO production rate to be invariant with pH on a Standard Hydrogen Electrode scale and conclude that it is limited by the CO$$_{2}$$2 adsorption step. We present a new multi-scale modeling scheme that integrates ab initio reaction kinetics with mass transport simulations, explicitly considering the charged electric double layer. The model reproduces the experimental CO polarization curve and reveals the rate-limiting step to be *COOH to *CO at low overpotentials, CO$$_{2}$$2 adsorption at intermediate ones, and CO$$_{2}$$2 mass transport at high overpotentials. Finally, we show the Tafel slope to arise from the electrostatic interaction between the dipole of *CO$$_{2}$$2 and the interfacial field. This work highlights the importance of surface charging for electrochemical kinetics and mass transport.

Suggested Citation

  • Stefan Ringe & Carlos G. Morales-Guio & Leanne D. Chen & Meredith Fields & Thomas F. Jaramillo & Christopher Hahn & Karen Chan, 2020. "Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13777-z
    DOI: 10.1038/s41467-019-13777-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13777-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13777-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Stefan Ringe, 2023. "The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Hong-Jie Peng & Michael T. Tang & Joakim Halldin Stenlid & Xinyan Liu & Frank Abild-Pedersen, 2022. "Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13777-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.