IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40957-9.html
   My bibliography  Save this article

Downregulation of transposable elements extends lifespan in Caenorhabditis elegans

Author

Listed:
  • Ádám Sturm

    (Eötvös Loránd University (ELTE)
    Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group)

  • Éva Saskői

    (Eötvös Loránd University (ELTE))

  • Bernadette Hotzi

    (Eötvös Loránd University (ELTE))

  • Anna Tarnóci

    (Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group)

  • János Barna

    (Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group)

  • Ferenc Bodnár

    (Eötvös Loránd University (ELTE))

  • Himani Sharma

    (Eötvös Loránd University (ELTE))

  • Tibor Kovács

    (Eötvös Loránd University (ELTE))

  • Eszter Ari

    (Eötvös Loránd University (ELTE)
    HCEMM-BRC Metabolic Systems Biology Research Group
    Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH))

  • Nóra Weinhardt

    (Eötvös Loránd University (ELTE))

  • Csaba Kerepesi

    (Institute for Computer Science and Control (SZTAKI)
    Brigham and Women’s Hospital & Harvard Medical School)

  • András Perczel

    (Eötvös Loránd University)

  • Zoltán Ivics

    (Paul Ehrlich Institute)

  • Tibor Vellai

    (Eötvös Loránd University (ELTE)
    Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group
    Vellab Biotech Ltd.)

Abstract

Mobility of transposable elements (TEs) frequently leads to insertional mutations in functional DNA regions. In the potentially immortal germline, TEs are effectively suppressed by the Piwi-piRNA pathway. However, in the genomes of ageing somatic cells lacking the effects of the pathway, TEs become increasingly mobile during the adult lifespan, and their activity is associated with genomic instability. Whether the progressively increasing mobilization of TEs is a cause or a consequence of ageing remains a fundamental problem in biology. Here we show that in the nematode Caenorhabditis elegans, the downregulation of active TE families extends lifespan. Ectopic activation of Piwi proteins in the soma also promotes longevity. Furthermore, DNA N6-adenine methylation at TE stretches gradually rises with age, and this epigenetic modification elevates their transcription as the animal ages. These results indicate that TEs represent a novel genetic determinant of ageing, and that N6-adenine methylation plays a pivotal role in ageing control.

Suggested Citation

  • Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40957-9
    DOI: 10.1038/s41467-023-40957-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40957-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40957-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cynthia J. Kenyon, 2010. "The genetics of ageing," Nature, Nature, vol. 464(7288), pages 504-512, March.
    2. Vera Gorbunova & Andrei Seluanov & Paolo Mita & Wilson McKerrow & David Fenyö & Jef D. Boeke & Sara B. Linker & Fred H. Gage & Jill A. Kreiling & Anna P. Petrashen & Trenton A. Woodham & Jackson R. Ta, 2021. "The role of retrotransposable elements in ageing and age-associated diseases," Nature, Nature, vol. 596(7870), pages 43-53, August.
    3. Robert J. Ross & Molly M. Weiner & Haifan Lin, 2014. "PIWI proteins and PIWI-interacting RNAs in the soma," Nature, Nature, vol. 505(7483), pages 353-359, January.
    4. Mohamed A. El-Brolosy & Zacharias Kontarakis & Andrea Rossi & Carsten Kuenne & Stefan Günther & Nana Fukuda & Khrievono Kikhi & Giulia L. M. Boezio & Carter M. Takacs & Shih-Lei Lai & Ryuichi Fukuda &, 2019. "Genetic compensation triggered by mutant mRNA degradation," Nature, Nature, vol. 568(7751), pages 193-197, April.
    5. Tao P. Wu & Tao Wang & Matthew G. Seetin & Yongquan Lai & Shijia Zhu & Kaixuan Lin & Yifei Liu & Stephanie D. Byrum & Samuel G. Mackintosh & Mei Zhong & Alan Tackett & Guilin Wang & Lawrence S. Hon & , 2016. "DNA methylation on N6-adenine in mammalian embryonic stem cells," Nature, Nature, vol. 532(7599), pages 329-333, April.
    6. Tibor Vellai, 2021. "How the amino acid leucine activates the key cell-growth regulator mTOR," Nature, Nature, vol. 596(7871), pages 192-194, August.
    7. Bing Yao & Ying Cheng & Zhiqin Wang & Yujing Li & Li Chen & Luoxiu Huang & Wenxin Zhang & Dahua Chen & Hao Wu & Beisha Tang & Peng Jin, 2017. "DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    8. Linhua Sun & Yuqing Jing & Xinyu Liu & Qi Li & Zhihui Xue & Zhukuan Cheng & Daowen Wang & Hang He & Weiqiang Qian, 2020. "Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    9. Michael Van Meter & Mehr Kashyap & Sarallah Rezazadeh & Anthony J. Geneva & Timothy D. Morello & Andrei Seluanov & Vera Gorbunova, 2014. "SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edouard Debonneuil & Anne Eyraud-Loisel & Frédéric Planchet, 2018. "Can Pension Funds Partially Manage Longevity Risk by Investing in a Longevity Megafund?," Risks, MDPI, vol. 6(3), pages 1-27, July.
    2. Qucheng Deng & Lijuan Chen & Yongping Wei & Yonghua Li & Xuerong Han & Wei Liang & Yinjun Zhao & Xiaofei Wang & Juan Yin, 2018. "Understanding the Association between Environmental Factors and Longevity in Hechi, China: A Drinking Water and Soil Quality Perspective," IJERPH, MDPI, vol. 15(10), pages 1-17, October.
    3. Arles Urrutia & Víctor A García-Angulo & Andrés Fuentes & Mauricio Caneo & Marcela Legüe & Sebastián Urquiza & Scarlett E Delgado & Juan Ugalde & Paula Burdisso & Andrea Calixto, 2020. "Bacterially produced metabolites protect C. elegans neurons from degeneration," PLOS Biology, Public Library of Science, vol. 18(3), pages 1-31, March.
    4. Liang Leng & Zhichao Xu & Bixia Hong & Binbin Zhao & Ya Tian & Can Wang & Lulu Yang & Zhongmei Zou & Lingyu Li & Ke Liu & Wanjun Peng & Jiangning Liu & Zhoujie An & Yalin Wang & Baozhong Duan & Zhigan, 2024. "Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Vishnu Muraleedharan Saraswathy & Lili Zhou & Mayssa H. Mokalled, 2024. "Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Yung-Heng Chang & Josh Dubnau, 2023. "Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Yan-Ping Zhang & Wen-Hong Zhang & Pan Zhang & Qi Li & Yue Sun & Jia-Wen Wang & Shaobing O. Zhang & Tao Cai & Cheng Zhan & Meng-Qiu Dong, 2022. "Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Smith, Ken R. & Hanson, Heidi A. & Norton, Maria C. & Hollingshaus, Michael S. & Mineau, Geraldine P., 2014. "Survival of offspring who experience early parental death: Early life conditions and later-life mortality," Social Science & Medicine, Elsevier, vol. 119(C), pages 180-190.
    10. Daniele Campa & Francesco De Rango & Maura Carrai & Paolina Crocco & Alberto Montesanto & Federico Canzian & Giuseppina Rose & Cosmeri Rizzato & Giuseppe Passarino & Roberto Barale, 2012. "Bitter Taste Receptor Polymorphisms and Human Aging," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    11. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Denisa Margină & Anca Ungurianu & Carmen Purdel & Dimitris Tsoukalas & Evangelia Sarandi & Maria Thanasoula & Fotios Tekos & Robin Mesnage & Demetrios Kouretas & Aristidis Tsatsakis, 2020. "Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors," IJERPH, MDPI, vol. 17(11), pages 1-27, June.
    13. Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Zhengyi Zhen & Yu Chen & Haiyan Wang & Huanyin Tang & Haiping Zhang & Haipeng Liu & Ying Jiang & Zhiyong Mao, 2023. "Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Jiyun Chen & Rong Hu & Ying Chen & Xiaofeng Lin & Wenwen Xiang & Hong Chen & Canglin Yao & Liang Liu, 2022. "Structural basis for MTA1c-mediated DNA N6-adenine methylation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Lee B. Miles & Vanessa Calcinotto & Sara Oveissi & Rita J. Serrano & Carmen Sonntag & Orlen Mulia & Clara Lee & Robert J. Bryson-Richardson, 2024. "CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Eirini Lionaki & Ilias Gkikas & Ioanna Daskalaki & Maria-Konstantina Ioannidi & Maria I. Klapa & Nektarios Tavernarakis, 2022. "Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Zhifei Zhang & Haiyan Yang & Lei Fang & Guangrong Zhao & Jun Xiang & Jialin C. Zheng & Zhao Qin, 2024. "DOS-3 mediates cell-non-autonomous DAF-16/FOXO activity in antagonizing age-related loss of C. elegans germline stem/progenitor cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Qucheng Deng & Yongping Wei & Lijuan Chen & Wei Liang & Jijun Du & Yuling Tan & Yinjun Zhao, 2019. "Relationship between Air Pollution and Regional Longevity in Guangxi, China," IJERPH, MDPI, vol. 16(19), pages 1-12, October.
    20. Sudip Kumar Paul & Motohiko Oshima & Ashwini Patil & Masamitsu Sone & Hisaya Kato & Yoshiro Maezawa & Hiyori Kaneko & Masaki Fukuyo & Bahityar Rahmutulla & Yasuo Ouchi & Kyoko Tsujimura & Mahito Nakan, 2024. "Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40957-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.