IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v596y2021i7870d10.1038_s41586-021-03542-y.html
   My bibliography  Save this article

The role of retrotransposable elements in ageing and age-associated diseases

Author

Listed:
  • Vera Gorbunova

    (University of Rochester
    University of Rochester)

  • Andrei Seluanov

    (University of Rochester
    University of Rochester)

  • Paolo Mita

    (NYU Langone Health
    NYU Langone Health
    Pandemic Response Lab)

  • Wilson McKerrow

    (NYU Langone Health
    NYU Langone Health)

  • David Fenyö

    (NYU Langone Health
    NYU Langone Health)

  • Jef D. Boeke

    (NYU Langone Health
    NYU Langone Health
    NYU Tandon School of Engineering)

  • Sara B. Linker

    (Laboratory of Genetics, The Salk Institute for Biological Studies)

  • Fred H. Gage

    (Laboratory of Genetics, The Salk Institute for Biological Studies)

  • Jill A. Kreiling

    (Brown University
    Brown University)

  • Anna P. Petrashen

    (Brown University
    Brown University)

  • Trenton A. Woodham

    (Brown University
    Brown University)

  • Jackson R. Taylor

    (Brown University
    Brown University)

  • Stephen L. Helfand

    (Brown University
    Brown University)

  • John M. Sedivy

    (Brown University
    Brown University)

Abstract

The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as ‘junk DNA’ and ‘molecular parasites’. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.

Suggested Citation

  • Vera Gorbunova & Andrei Seluanov & Paolo Mita & Wilson McKerrow & David Fenyö & Jef D. Boeke & Sara B. Linker & Fred H. Gage & Jill A. Kreiling & Anna P. Petrashen & Trenton A. Woodham & Jackson R. Ta, 2021. "The role of retrotransposable elements in ageing and age-associated diseases," Nature, Nature, vol. 596(7870), pages 43-53, August.
  • Handle: RePEc:nat:nature:v:596:y:2021:i:7870:d:10.1038_s41586-021-03542-y
    DOI: 10.1038/s41586-021-03542-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03542-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03542-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yung-Heng Chang & Josh Dubnau, 2023. "Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Chunwei Zheng & Bin Liu & Xiaolong Dong & Nicholas Gaston & Erik J. Sontheimer & Wen Xue, 2023. "Template-jumping prime editing enables large insertion and exon rewriting in vivo," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Gangming Zhang & Chunwei Zheng & Yue-he Ding & Craig Mello, 2024. "Casein kinase II promotes piRNA production through direct phosphorylation of USTC component TOFU-4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:596:y:2021:i:7870:d:10.1038_s41586-021-03542-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.