IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v568y2019i7751d10.1038_s41586-019-1064-z.html
   My bibliography  Save this article

Genetic compensation triggered by mutant mRNA degradation

Author

Listed:
  • Mohamed A. El-Brolosy

    (Max Planck Institute for Heart and Lung Research)

  • Zacharias Kontarakis

    (Max Planck Institute for Heart and Lung Research)

  • Andrea Rossi

    (Max Planck Institute for Heart and Lung Research
    Leibniz Research Institute for Environmental Medicine)

  • Carsten Kuenne

    (Max Planck Institute for Heart and Lung Research)

  • Stefan Günther

    (Max Planck Institute for Heart and Lung Research)

  • Nana Fukuda

    (Max Planck Institute for Heart and Lung Research)

  • Khrievono Kikhi

    (Max Planck Institute for Heart and Lung Research)

  • Giulia L. M. Boezio

    (Max Planck Institute for Heart and Lung Research)

  • Carter M. Takacs

    (Yale University School of Medicine
    University of New Haven)

  • Shih-Lei Lai

    (Max Planck Institute for Heart and Lung Research
    Institute of Biomedical Sciences, Academia Sinica)

  • Ryuichi Fukuda

    (Max Planck Institute for Heart and Lung Research)

  • Claudia Gerri

    (Max Planck Institute for Heart and Lung Research
    The Francis Crick Institute)

  • Antonio J. Giraldez

    (Yale University School of Medicine)

  • Didier Y. R. Stainier

    (Max Planck Institute for Heart and Lung Research)

Abstract

Genetic robustness, or the ability of an organism to maintain fitness in the presence of harmful mutations, can be achieved via protein feedback loops. Previous work has suggested that organisms may also respond to mutations by transcriptional adaptation, a process by which related gene(s) are upregulated independently of protein feedback loops. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analysing several models of transcriptional adaptation in zebrafish and mouse, we uncover a requirement for mutant mRNA degradation. Alleles that fail to transcribe the mutated gene do not exhibit transcriptional adaptation, and these alleles give rise to more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis in alleles displaying mutant mRNA decay reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene's mRNA, suggesting a sequence-dependent mechanism. These findings have implications for our understanding of disease-causing mutations, and will help in the design of mutant alleles with minimal transcriptional adaptation-derived compensation.

Suggested Citation

  • Mohamed A. El-Brolosy & Zacharias Kontarakis & Andrea Rossi & Carsten Kuenne & Stefan Günther & Nana Fukuda & Khrievono Kikhi & Giulia L. M. Boezio & Carter M. Takacs & Shih-Lei Lai & Ryuichi Fukuda &, 2019. "Genetic compensation triggered by mutant mRNA degradation," Nature, Nature, vol. 568(7751), pages 193-197, April.
  • Handle: RePEc:nat:nature:v:568:y:2019:i:7751:d:10.1038_s41586-019-1064-z
    DOI: 10.1038/s41586-019-1064-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1064-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1064-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Thomas Juan & Agatha Ribeiro da Silva & Bárbara Cardoso & SoEun Lim & Violette Charteau & Didier Y. R. Stainier, 2023. "Multiple pkd and piezo gene family members are required for atrioventricular valve formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Min Zhou & Yuan Li & Xiao-Lei Yao & Jing Zhang & Sheng Liu & Hong-Rui Cao & Shuang Bai & Chun-Qu Chen & Dan-Xun Zhang & Ao Xu & Jia-Ning Lei & Qian-Zhuo Mao & Yu Zhou & De-Qiang Duanmu & Yue-Feng Guan, 2024. "Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Johannes Benedum & Vedran Franke & Lisa-Marie Appel & Lena Walch & Melania Bruno & Rebecca Schneeweiss & Juliane Gruber & Helena Oberndorfer & Emma Frank & Xué Strobl & Anton Polyansky & Bojan Zagrovi, 2023. "The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Chao Fang & Zhihui Sun & Shichen Li & Tong Su & Lingshuang Wang & Lidong Dong & Haiyang Li & Lanxin Li & Lingping Kong & Zhiquan Yang & Xiaoya Lin & Alibek Zatybekov & Baohui Liu & Fanjiang Kong & Sij, 2024. "Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Lee B. Miles & Vanessa Calcinotto & Sara Oveissi & Rita J. Serrano & Carmen Sonntag & Orlen Mulia & Clara Lee & Robert J. Bryson-Richardson, 2024. "CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Federica Diofano & Karolina Weinmann & Isabelle Schneider & Kevin D Thiessen & Wolfgang Rottbauer & Steffen Just, 2020. "Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-24, November.
    11. Katarzyna Niescierowicz & Leszek Pryszcz & Cristina Navarrete & Eugeniusz Tralle & Agata Sulej & Karim Abu Nahia & Marta Elżbieta Kasprzyk & Katarzyna Misztal & Abhishek Pateria & Adrianna Pakuła & Ma, 2022. "Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Luca Guglielmi & Claire Heliot & Sunil Kumar & Yuriy Alexandrov & Ilaria Gori & Foteini Papaleonidopoulou & Christopher Barrington & Philip East & Andrew D. Economou & Paul M. W. French & James McGint, 2021. "Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    13. Lior Fishman & Avani Modak & Gal Nechooshtan & Talya Razin & Florian Erhard & Aviv Regev & Jeffrey A. Farrell & Michal Rabani, 2024. "Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Vishnu Muraleedharan Saraswathy & Lili Zhou & Mayssa H. Mokalled, 2024. "Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:568:y:2019:i:7751:d:10.1038_s41586-019-1064-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.