IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40865-y.html
   My bibliography  Save this article

Hypothermal opto-thermophoretic tweezers

Author

Listed:
  • Pavana Siddhartha Kollipara

    (The University of Texas at Austin)

  • Xiuying Li

    (The University of Texas at Dallas)

  • Jingang Li

    (The University of Texas at Austin
    University of California)

  • Zhihan Chen

    (The University of Texas at Austin)

  • Hongru Ding

    (The University of Texas at Austin)

  • Youngsun Kim

    (The University of Texas at Austin)

  • Suichu Huang

    (Harbin Institute of Technology)

  • Zhenpeng Qin

    (The University of Texas at Dallas
    The University of Texas at Dallas
    The University of Texas Southwestern Medical Center
    The University of Texas at Dallas)

  • Yuebing Zheng

    (The University of Texas at Austin
    The University of Texas at Austin)

Abstract

Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.

Suggested Citation

  • Pavana Siddhartha Kollipara & Xiuying Li & Jingang Li & Zhihan Chen & Hongru Ding & Youngsun Kim & Suichu Huang & Zhenpeng Qin & Yuebing Zheng, 2023. "Hypothermal opto-thermophoretic tweezers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40865-y
    DOI: 10.1038/s41467-023-40865-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40865-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40865-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Ahmed & Adem Ozcelik & Nagagireesh Bojanala & Nitesh Nama & Awani Upadhyay & Yuchao Chen & Wendy Hanna-Rose & Tony Jun Huang, 2016. "Rotational manipulation of single cells and organisms using acoustic waves," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    2. Emma L. Talbot & Jurij Kotar & Lucia Parolini & Lorenzo Di Michele & Pietro Cicuta, 2017. "Thermophoretic migration of vesicles depends on mean temperature and head group chemistry," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Guido Bolognesi & Mark S. Friddin & Ali Salehi-Reyhani & Nathan E. Barlow & Nicholas J. Brooks & Oscar Ces & Yuval Elani, 2018. "Sculpting and fusing biomimetic vesicle networks using optical tweezers," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Pei Yu Chiou & Aaron T. Ohta & Ming C. Wu, 2005. "Massively parallel manipulation of single cells and microparticles using optical images," Nature, Nature, vol. 436(7049), pages 370-372, July.
    5. Hongri Gu & Quentin Boehler & Haoyang Cui & Eleonora Secchi & Giovanni Savorana & Carmela Marco & Simone Gervasoni & Quentin Peyron & Tian-Yun Huang & Salvador Pane & Ann M. Hirt & Daniel Ahmed & Brad, 2020. "Magnetic cilia carpets with programmable metachronal waves," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Janiak & Yuyang Li & Yann Ferry & Alexander A. Doinikov & Daniel Ahmed, 2023. "Acoustic microbubble propulsion, train-like assembly and cargo transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Mia Kvåle Løvmo & Shiyu Deng & Simon Moser & Rainer Leitgeb & Wolfgang Drexler & Monika Ritsch-Marte, 2024. "Ultrasound-induced reorientation for multi-angle optical coherence tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Anupam Pandey & Zih-Yin Chen & Jisoo Yuk & Yuming Sun & Chris Roh & Daisuke Takagi & Sungyon Lee & Sunghwan Jung, 2023. "Optimal free-surface pumping by an undulating carpet," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xiaodong Jiao & Jin Tao & Hao Sun & Qinglin Sun, 2022. "Kinematic Modes Identification and Its Intelligent Control of Micro-Nano Particle Manipulated by Acoustic Signal," Mathematics, MDPI, vol. 10(21), pages 1-13, November.
    11. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Hongri Gu & Marino Möckli & Claas Ehmke & Minsoo Kim & Matthias Wieland & Simon Moser & Clemens Bechinger & Quentin Boehler & Bradley J. Nelson, 2023. "Self-folding soft-robotic chains with reconfigurable shapes and functionalities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Jan Durrer & Prajwal Agrawal & Ali Ozgul & Stephan C. F. Neuhauss & Nitesh Nama & Daniel Ahmed, 2022. "A robot-assisted acoustofluidic end effector," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Shahram Janbaz & Corentin Coulais, 2024. "Diffusive kinks turn kirigami into machines," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Ke-Hui Wu & Li-Ting Zhu & Fang-Fang Xiao & Xuejia Hu & Sen-Sen Li & Lu-Jian Chen, 2024. "Light-regulated soliton dynamics in liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Punnag Padhy & Mohammad Asif Zaman & Michael Anthony Jensen & Yao-Te Cheng & Yogi Huang & Mo Wu & Ludwig Galambos & Ronald Wayne Davis & Lambertus Hesselink, 2024. "Dielectrophoretic bead-droplet reactor for solid-phase synthesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40865-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.