IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57178-x.html
   My bibliography  Save this article

Remodeling of lipid-foam prototissues by network-wide tension fluctuations induced by active particles

Author

Listed:
  • Andre A. Gu

    (Northwestern University
    Northwestern University)

  • Mehmet Can Uçar

    (Institute of Science and Technology Austria
    University of Sheffield)

  • Peter Tran

    (Northwestern University)

  • Arthur Prindle

    (Northwestern University
    Northwestern University
    Northwestern University
    Feinberg School of Medicine)

  • Neha P. Kamat

    (Northwestern University
    Northwestern University
    Northwestern University)

  • Jan Steinkühler

    (Kiel University
    Kiel University)

Abstract

Recent advances in the field of bottom-up synthetic biology have led to the development of synthetic cells that mimic some features of real cells, such as division, protein synthesis, or DNA replication. Larger assemblies of synthetic cells may be used to form prototissues. However, existing prototissues are limited by their relatively small lateral dimensions or their lack of remodeling ability. Here, we introduce a lipid-based tissue mimetic that can be easily prepared and functionalized, consisting of a millimeter-sized “lipid-foam” with individual micrometer-sized compartments bound by lipid bilayers. We characterize the structural and mechanical properties of the lipid-foam tissue mimetic, and we demonstrate self-healing capabilities enabled by the fluidity of the lipid bilayers. Upon inclusion of bacteria in the tissue compartments, we observe that the tissue mimetic exhibits network-wide tension fluctuations driven by membrane tension generation by the swimming bacteria. Active tension fluctuations facilitate the fluidization and reorganization of the prototissue, providing a versatile platform for understanding and mimicking biological tissues.

Suggested Citation

  • Andre A. Gu & Mehmet Can Uçar & Peter Tran & Arthur Prindle & Neha P. Kamat & Jan Steinkühler, 2025. "Remodeling of lipid-foam prototissues by network-wide tension fluctuations induced by active particles," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57178-x
    DOI: 10.1038/s41467-025-57178-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57178-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57178-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hanumantha Rao Vutukuri & Masoud Hoore & Clara Abaurrea-Velasco & Lennard Buren & Alessandro Dutto & Thorsten Auth & Dmitry A. Fedosov & Gerhard Gompper & Jan Vermant, 2020. "Active particles induce large shape deformations in giant lipid vesicles," Nature, Nature, vol. 586(7827), pages 52-56, October.
    3. Pauline van Nies & Ilja Westerlaken & Duco Blanken & Margarita Salas & Mario Mencía & Christophe Danelon, 2018. "Self-replication of DNA by its encoded proteins in liposome-based synthetic cells," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. V. Trappe & V. Prasad & Luca Cipelletti & P. N. Segre & D. A. Weitz, 2001. "Jamming phase diagram for attractive particles," Nature, Nature, vol. 411(6839), pages 772-775, June.
    5. Guido Bolognesi & Mark S. Friddin & Ali Salehi-Reyhani & Nathan E. Barlow & Nicholas J. Brooks & Oscar Ces & Yuval Elani, 2018. "Sculpting and fusing biomimetic vesicle networks using optical tweezers," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pragya Arora & Souvik Sadhukhan & Saroj Kumar Nandi & Dapeng Bi & A. K. Sood & Rajesh Ganapathy, 2024. "A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Weria Pezeshkian & John H. Ipsen, 2024. "Mesoscale simulation of biomembranes with FreeDTS," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Céline Dinet & Alejandro Torres-Sánchez & Roberta Lanfranco & Lorenzo Michele & Marino Arroyo & Margarita Staykova, 2023. "Patterning and dynamics of membrane adhesion under hydraulic stress," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yoshihiro Minagawa & Moe Yabuta & Masayuki Su’etsugu & Hiroyuki Noji, 2025. "Self-growing protocell models in aqueous two-phase system induced by internal DNA replication reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Kanji Tomohara & Yoshihiro Minagawa & Hiroyuki Noji, 2025. "Artificial cells with all-aqueous droplet-in-droplet structures for spatially separated transcription and translation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Yan Yu & Runfeng Lin & Hongyue Yu & Minchao Liu & Enyun Xing & Wenxing Wang & Fan Zhang & Dongyuan Zhao & Xiaomin Li, 2023. "Versatile synthesis of metal-compound based mesoporous Janus nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Shravan Pradeep & Paulo E. Arratia & Douglas J. Jerolmack, 2024. "Origins of complexity in the rheology of Soft Earth suspensions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Matthew S. E. Peterson & Aparna Baskaran & Michael F. Hagan, 2021. "Vesicle shape transformations driven by confined active filaments," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Omer Adir & Mia R. Albalak & Ravit Abel & Lucien E. Weiss & Gal Chen & Amit Gruber & Oskar Staufer & Yaniv Kurman & Ido Kaminer & Jeny Shklover & Janna Shainsky-Roitman & Ilia Platzman & Lior Gepstein, 2022. "Synthetic cells with self-activating optogenetic proteins communicate with natural cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Jens Grauer & Falko Schmidt & Jesús Pineda & Benjamin Midtvedt & Hartmut Löwen & Giovanni Volpe & Benno Liebchen, 2021. "Active droploids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Jorik Waeterschoot & Willemien Gosselé & Špela Lemež & Xavier Casadevall i Solvas, 2024. "Artificial cells for in vivo biomedical applications through red blood cell biomimicry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Zhanar Abil & Ana María Restrepo Sierra & Andreea R. Stan & Amélie Châne & Alicia Prado & Miguel Vega & Yannick Rondelez & Christophe Danelon, 2024. "Darwinian Evolution of Self-Replicating DNA in a Synthetic Protocell," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Pavana Siddhartha Kollipara & Xiuying Li & Jingang Li & Zhihan Chen & Hongru Ding & Youngsun Kim & Suichu Huang & Zhenpeng Qin & Yuebing Zheng, 2023. "Hypothermal opto-thermophoretic tweezers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Mohammad Nabizadeh & Safa Jamali, 2021. "Life and death of colloidal bonds control the rate-dependent rheology of gels," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57178-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.