IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04282-w.html
   My bibliography  Save this article

Sculpting and fusing biomimetic vesicle networks using optical tweezers

Author

Listed:
  • Guido Bolognesi

    (Loughborough University)

  • Mark S. Friddin

    (Imperial College London)

  • Ali Salehi-Reyhani

    (Imperial College London
    Imperial College London
    Imperial College London)

  • Nathan E. Barlow

    (Imperial College London)

  • Nicholas J. Brooks

    (Imperial College London
    Imperial College London)

  • Oscar Ces

    (Imperial College London
    Imperial College London
    Imperial College London)

  • Yuval Elani

    (Imperial College London
    Imperial College London
    Imperial College London)

Abstract

Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.

Suggested Citation

  • Guido Bolognesi & Mark S. Friddin & Ali Salehi-Reyhani & Nathan E. Barlow & Nicholas J. Brooks & Oscar Ces & Yuval Elani, 2018. "Sculpting and fusing biomimetic vesicle networks using optical tweezers," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04282-w
    DOI: 10.1038/s41467-018-04282-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04282-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04282-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Pavana Siddhartha Kollipara & Xiuying Li & Jingang Li & Zhihan Chen & Hongru Ding & Youngsun Kim & Suichu Huang & Zhenpeng Qin & Yuebing Zheng, 2023. "Hypothermal opto-thermophoretic tweezers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04282-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.