IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15351.html
   My bibliography  Save this article

Thermophoretic migration of vesicles depends on mean temperature and head group chemistry

Author

Listed:
  • Emma L. Talbot

    (Cavendish Laboratory, University of Cambridge)

  • Jurij Kotar

    (Cavendish Laboratory, University of Cambridge)

  • Lucia Parolini

    (Cavendish Laboratory, University of Cambridge)

  • Lorenzo Di Michele

    (Cavendish Laboratory, University of Cambridge)

  • Pietro Cicuta

    (Cavendish Laboratory, University of Cambridge)

Abstract

A number of colloidal systems, including polymers, proteins, micelles and hard spheres, have been studied in thermal gradients to observe and characterize their driven motion. Here we show experimentally the thermophoretic behaviour of unilamellar lipid vesicles, finding that mobility depends on the mean local temperature of the suspension and on the structure of the exposed polar lipid head groups. By tuning the temperature, vesicles can be directed towards hot or cold, forming a highly concentrated region. Binary mixtures of vesicles composed of different lipids can be segregated using thermophoresis, according to their head group. Our results demonstrate that thermophoresis enables robust and chemically specific directed motion of liposomes, which can be exploited in driven processes.

Suggested Citation

  • Emma L. Talbot & Jurij Kotar & Lucia Parolini & Lorenzo Di Michele & Pietro Cicuta, 2017. "Thermophoretic migration of vesicles depends on mean temperature and head group chemistry," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15351
    DOI: 10.1038/ncomms15351
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15351
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavana Siddhartha Kollipara & Xiuying Li & Jingang Li & Zhihan Chen & Hongru Ding & Youngsun Kim & Suichu Huang & Zhenpeng Qin & Yuebing Zheng, 2023. "Hypothermal opto-thermophoretic tweezers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.