IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11085.html
   My bibliography  Save this article

Rotational manipulation of single cells and organisms using acoustic waves

Author

Listed:
  • Daniel Ahmed

    (The Pennsylvania State University)

  • Adem Ozcelik

    (The Pennsylvania State University)

  • Nagagireesh Bojanala

    (The Pennsylvania State University)

  • Nitesh Nama

    (The Pennsylvania State University)

  • Awani Upadhyay

    (The Pennsylvania State University)

  • Yuchao Chen

    (The Pennsylvania State University)

  • Wendy Hanna-Rose

    (The Pennsylvania State University)

  • Tony Jun Huang

    (The Pennsylvania State University
    The Pennsylvania State University)

Abstract

The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

Suggested Citation

  • Daniel Ahmed & Adem Ozcelik & Nagagireesh Bojanala & Nitesh Nama & Awani Upadhyay & Yuchao Chen & Wendy Hanna-Rose & Tony Jun Huang, 2016. "Rotational manipulation of single cells and organisms using acoustic waves," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11085
    DOI: 10.1038/ncomms11085
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11085
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mia Kvåle Løvmo & Shiyu Deng & Simon Moser & Rainer Leitgeb & Wolfgang Drexler & Monika Ritsch-Marte, 2024. "Ultrasound-induced reorientation for multi-angle optical coherence tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jakub Janiak & Yuyang Li & Yann Ferry & Alexander A. Doinikov & Daniel Ahmed, 2023. "Acoustic microbubble propulsion, train-like assembly and cargo transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Xiaodong Jiao & Jin Tao & Hao Sun & Qinglin Sun, 2022. "Kinematic Modes Identification and Its Intelligent Control of Micro-Nano Particle Manipulated by Acoustic Signal," Mathematics, MDPI, vol. 10(21), pages 1-13, November.
    5. Jan Durrer & Prajwal Agrawal & Ali Ozgul & Stephan C. F. Neuhauss & Nitesh Nama & Daniel Ahmed, 2022. "A robot-assisted acoustofluidic end effector," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Peng Pan & Michael Zoberman & Pengsong Zhang & Sharanja Premachandran & Sanjana Bhatnagar & Pallavi P. Pilaka-Akella & William Sun & Chengyin Li & Charlotte Martin & Pengfei Xu & Zefang Zhang & Ryan L, 2024. "Robotic microinjection enables large-scale transgenic studies of Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Pavana Siddhartha Kollipara & Xiuying Li & Jingang Li & Zhihan Chen & Hongru Ding & Youngsun Kim & Suichu Huang & Zhenpeng Qin & Yuebing Zheng, 2023. "Hypothermal opto-thermophoretic tweezers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.