IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35905-6.html
   My bibliography  Save this article

Bio-inspired magnetic-driven folded diaphragm for biomimetic robot

Author

Listed:
  • Dezhao Lin

    (Huaqiao University)

  • Fan Yang

    (Huaqiao University)

  • Di Gong

    (Huaqiao University
    Institute of Extremely-Weak-Magnetic-Field Massive Scientific Instrumentation Facility)

  • Ruihong Li

    (Huaqiao University)

Abstract

Functional soft materials, exhibiting multiple types of deformation, have shown their potential/abilities to achieve complicated biomimetic behaviors (soft robots). Inspired by the locomotion of earthworm, which is conducted through the contraction and stretching between body segments, this study proposes a type of one-piece-mold folded diaphragm, consisting of the structure of body segments with radial magnetization property, to achieve large 3D and bi-directional deformation with inside-volume change capability subjected to the low homogeneous magnetically driving field (40 mT). Moreover, the appearance based on the proposed magnetic-driven folded diaphragm is able to be easily customized to desired ones and then implanted into different untethered soft robotic systems as soft drivers. To verify the above points, we design the diaphragm pump providing unique properties of lightweight, powerful output and rapid response, and the soft robot including the bio-earthworm crawling robot and swimming robot inspired by squid to exhibit the flexible and rapid locomotion excited by single homogeneous magnetic fields.

Suggested Citation

  • Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35905-6
    DOI: 10.1038/s41467-023-35905-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35905-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35905-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hen-Wei Huang & Mahmut Selman Sakar & Andrew J. Petruska & Salvador Pané & Bradley J. Nelson, 2016. "Soft micromachines with programmable motility and morphology," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    2. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jizhai Cui & Tian-Yun Huang & Zhaochu Luo & Paolo Testa & Hongri Gu & Xiang-Zhong Chen & Bradley J. Nelson & Laura J. Heyderman, 2019. "Nanomagnetic encoding of shape-morphing micromachines," Nature, Nature, vol. 575(7781), pages 164-168, November.
    4. Yun Ling & Wenbo Pang & Jianxing Liu & Margaret Page & Yadong Xu & Ganggang Zhao & David Stalla & Jingwei Xie & Yihui Zhang & Zheng Yan, 2022. "Bioinspired elastomer composites with programmed mechanical and electrical anisotropies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    6. Hongri Gu & Quentin Boehler & Haoyang Cui & Eleonora Secchi & Giovanni Savorana & Carmela Marco & Simone Gervasoni & Quentin Peyron & Tian-Yun Huang & Salvador Pane & Ann M. Hirt & Daniel Ahmed & Brad, 2020. "Magnetic cilia carpets with programmable metachronal waves," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Sukyoung Won & Sanha Kim & Jeong Eun Park & Jisoo Jeon & Jeong Jae Wie, 2019. "On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Qiji Ze & Shuai Wu & Jize Dai & Sophie Leanza & Gentaro Ikeda & Phillip C. Yang & Gianluca Iaccarino & Ruike Renee Zhao, 2022. "Spinning-enabled wireless amphibious origami millirobot," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Liyang Mao & Peng Yang & Chenyao Tian & Xingjian Shen & Feihao Wang & Hao Zhang & Xianghe Meng & Hui Xie, 2024. "Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    11. Liwei Wang & Yilong Chang & Shuai Wu & Ruike Renee Zhao & Wei Chen, 2023. "Physics-aware differentiable design of magnetically actuated kirigami for shape morphing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Anupam Pandey & Zih-Yin Chen & Jisoo Yuk & Yuming Sun & Chris Roh & Daisuke Takagi & Sungyon Lee & Sunghwan Jung, 2023. "Optimal free-surface pumping by an undulating carpet," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Yamei Li & Yingxin Huo & Xiangyu Chu & Lidong Yang, 2024. "Automated Magnetic Microrobot Control: From Mathematical Modeling to Machine Learning," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
    20. Ren Hao Soon & Zhen Yin & Metin Alp Dogan & Nihal Olcay Dogan & Mehmet Efe Tiryaki & Alp Can Karacakol & Asli Aydin & Pouria Esmaeili-Dokht & Metin Sitti, 2023. "Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35905-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.