IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40814-9.html
   My bibliography  Save this article

Cholesterol removal improves performance of a model biomimetic system to co-deliver a photothermal agent and a STING agonist for cancer immunotherapy

Author

Listed:
  • Lin Li

    (Sichuan University)

  • Mengxing Zhang

    (Sichuan University)

  • Jing Li

    (Sichuan University)

  • Tiantian Liu

    (Sichuan University)

  • Qixue Bao

    (Sichuan University)

  • Xi Li

    (Sichuan University)

  • Jiaying Long

    (Sichuan University)

  • Leyao Fu

    (Sichuan University)

  • Zhirong Zhang

    (Sichuan University)

  • Shiqi Huang

    (Sichuan University)

  • Zhenmi Liu

    (Sichuan University)

  • Ling Zhang

    (Sichuan University
    Sichuan University)

Abstract

Biological membranes often play important functional roles in biomimetic drug delivery systems. We discover that the circulation time and targeting capability of biological membrane coated nanovehicles can be significantly improved by reducing cholesterol level in the coating membrane. A proof-of-concept system using cholesterol-reduced and PD-1-overexpressed T cell membrane to deliver a photothermal agent and a STING agonist is thus fabricated. Comparing with normal membrane, this engineered membrane increases tumor accumulation by ~2-fold. In a melanoma model in male mice, tumors are eliminated with no recurrence in >80% mice after intravenous injection and laser irradiation; while in a colon cancer model in male mice, ~40% mice are cured without laser irradiation. Data suggest that the engineered membranes escape immune surveillance to avoid blood clearance while keeping functional surface molecules exposed. In summary, we develop a simple, effective, safe and widely-applicable biological membrane modification strategy. This “subtractive” strategy displays some advantages and is worth further development.

Suggested Citation

  • Lin Li & Mengxing Zhang & Jing Li & Tiantian Liu & Qixue Bao & Xi Li & Jiaying Long & Leyao Fu & Zhirong Zhang & Shiqi Huang & Zhenmi Liu & Ling Zhang, 2023. "Cholesterol removal improves performance of a model biomimetic system to co-deliver a photothermal agent and a STING agonist for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40814-9
    DOI: 10.1038/s41467-023-40814-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40814-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40814-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ting Li & Shuhui Jiang & Ying Zhang & Jie Luo & Ming Li & Hengte Ke & Yibin Deng & Tao Yang & Xiaohui Sun & Huabing Chen, 2023. "Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    2. Zui Zhang & Juan Guan & Zhuxuan Jiang & Yang Yang & Jican Liu & Wei Hua & Ying Mao & Cheng Li & Weiyue Lu & Jun Qian & Changyou Zhan, 2019. "Brain-targeted drug delivery by manipulating protein corona functions," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Lizhi Liu & Xuan Bai & Maria-Viola Martikainen & Anna Kårlund & Marjut Roponen & Wujun Xu & Guoqing Hu & Ennio Tasciotti & Vesa-Pekka Lehto, 2021. "Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Zhongmin Geng & Zhenping Cao & Rui Liu & Ke Liu & Jinyao Liu & Weihong Tan, 2021. "Aptamer-assisted tumor localization of bacteria for enhanced biotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Juan Guan & Qing Shen & Zui Zhang & Zhuxuan Jiang & Yang Yang & Meiqing Lou & Jun Qian & Weiyue Lu & Changyou Zhan, 2018. "Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Akbar Ashkarran & Hassan Gharibi & Elizabeth Voke & Markita P. Landry & Amir Ata Saei & Morteza Mahmoudi, 2022. "Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Huilong Luo & Yanmei Chen & Xiao Kuang & Xinyue Wang & Fengmin Yang & Zhenping Cao & Lu Wang & Sisi Lin & Feng Wu & Jinyao Liu, 2022. "Chemical reaction-mediated covalent localization of bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Mingyang Li & Xinyang Jin & Tao Liu & Feng Fan & Feng Gao & Shuang Chai & Lihua Yang, 2022. "Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Wei Jiang & Qing Li & Ruofei Zhang & Jianru Li & Qianyu Lin & Jingyun Li & Xinyao Zhou & Xiyun Yan & Kelong Fan, 2023. "Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson’s disease," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Lizhi Liu & Dingyi Pan & Sheng Chen & Maria-Viola Martikainen & Anna Kårlund & Jing Ke & Herkko Pulkkinen & Hanna Ruhanen & Marjut Roponen & Reijo Käkelä & Wujun Xu & Jie Wang & Vesa-Pekka Lehto, 2022. "Systematic design of cell membrane coating to improve tumor targeting of nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Xiaotu Ma & Xiaolong Liang & Yao Li & Qingqing Feng & Keman Cheng & Nana Ma & Fei Zhu & Xinjing Guo & Yale Yue & Guangna Liu & Tianjiao Zhang & Jie Liang & Lei Ren & Xiao Zhao & Guangjun Nie, 2023. "Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40814-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.