IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34036-8.html
   My bibliography  Save this article

Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response

Author

Listed:
  • Zhaoting Li

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Fanyi Mo

    (University of Wisconsin-Madison)

  • Yixin Wang

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Wen Li

    (University of Wisconsin-Madison)

  • Yu Chen

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Jun Liu

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Ting-Jing Chen-Mayfield

    (University of Wisconsin-Madison)

  • Quanyin Hu

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

Abstract

Pore-forming Gasdermin protein-induced pyroptosis in tumor cells promotes anti-tumor immune response through the release of pro-inflammatory cytokines and immunogenic substances after cell rupture. However, endosomal sorting complexes required for transport (ESCRT) III-mediated cell membrane repair significantly diminishes the tumor cell pyroptosis by repairing and subsequently removing gasdermin pores. Here, we show that blocking calcium influx-triggered ESCRT III-dependent membrane repair through a biodegradable nanoparticle-mediated sustained release of calcium chelator (EI-NP) strongly enhances the intracellularly delivered GSDMD-induced tumor pyroptosis via a bacteria-based delivery system (VNP-GD). An injectable hydrogel and a lyophilized hydrogel-based cell patch are developed for peritumoral administration for treating primary and metastatic tumors, and implantation for treating inoperable tumors respectively. The hydrogels, functioning as the local therapeutic reservoirs, can sustainedly release VNP-GD to effectively trigger tumor pyroptosis and EI-NP to prevent the ESCRT III-induced plasma membrane repair to boost the pyroptosis effects, working synergistically to augment the anti-tumor immune response.

Suggested Citation

  • Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34036-8
    DOI: 10.1038/s41467-022-34036-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34036-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34036-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chi Zhang & Ziling Zeng & Dong Cui & Shasha He & Yuyan Jiang & Jingchao Li & Jiaguo Huang & Kanyi Pu, 2021. "Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Qinyang Wang & Yupeng Wang & Jingjin Ding & Chunhong Wang & Xuehan Zhou & Wenqing Gao & Huanwei Huang & Feng Shao & Zhibo Liu, 2020. "A bioorthogonal system reveals antitumour immune function of pyroptosis," Nature, Nature, vol. 579(7799), pages 421-426, March.
    3. Zhongmin Geng & Zhenping Cao & Rui Liu & Ke Liu & Jinyao Liu & Weihong Tan, 2021. "Aptamer-assisted tumor localization of bacteria for enhanced biotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Jingjin Ding & Kun Wang & Wang Liu & Yang She & Qi Sun & Jianjin Shi & Hanzi Sun & Da-Cheng Wang & Feng Shao, 2016. "Pore-forming activity and structural autoinhibition of the gasdermin family," Nature, Nature, vol. 535(7610), pages 111-116, July.
    5. Wanyan Deng & Yang Bai & Fan Deng & Youdong Pan & Shenglin Mei & Zengzhang Zheng & Rui Min & Zeyu Wu & Wu Li & Rui Miao & Zhibin Zhang & Thomas S. Kupper & Judy Lieberman & Xing Liu, 2022. "Author Correction: Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis," Nature, Nature, vol. 608(7923), pages 28-28, August.
    6. Wenqing Li & Xinfu Zhang & Chengxiang Zhang & Jingyue Yan & Xucheng Hou & Shi Du & Chunxi Zeng & Weiyu Zhao & Binbin Deng & David W. McComb & Yuebao Zhang & Diana D. Kang & Junan Li & William E. Carso, 2021. "Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Wanyan Deng & Yang Bai & Fan Deng & Youdong Pan & Shenglin Mei & Zengzhang Zheng & Rui Min & Zeyu Wu & Wu Li & Rui Miao & Zhibin Zhang & Thomas S. Kupper & Judy Lieberman & Xing Liu, 2022. "Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis," Nature, Nature, vol. 602(7897), pages 496-502, February.
    8. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    9. Yuling Xiao & Jiang Chen & Hui Zhou & Xiaodong Zeng & Zhiping Ruan & Zhangya Pu & Xingya Jiang & Aya Matsui & Lingling Zhu & Zohreh Amoozgar & Dean Shuailin Chen & Xiangfei Han & Dan G. Duda & Jinjun , 2022. "Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si-Jia Sun & Xiao-Dong Jiao & Zhi-Gang Chen & Qi Cao & Jia-Hui Zhu & Qi-Rui Shen & Yi Liu & Zhen Zhang & Fang-Fang Xu & Yu Shi & Jie Tong & Shen-Xi Ouyang & Jiang-Tao Fu & Yi Zhao & Jun Ren & Dong-Jie, 2024. "Gasdermin-E-mediated pyroptosis drives immune checkpoint inhibitor-associated myocarditis via cGAS-STING activation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Dao-Gong Zhang & Wen-Qian Yu & Jia-Hui Liu & Li-Gang Kong & Na Zhang & Yong-Dong Song & Xiao-Fei Li & Zhao-Min Fan & Ya-Feng Lyu & Na Li & Hai-Bo Wang, 2023. "Serum/glucocorticoid-inducible kinase 1 deficiency induces NLRP3 inflammasome activation and autoinflammation of macrophages in a murine endolymphatic hydrops model," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Fengqiao Li & Xue-Qing Zhang & William Ho & Maoping Tang & Zhongyu Li & Lei Bu & Xiaoyang Xu, 2023. "mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    11. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Sheng-Yan Huang & Sha Gong & Yin Zhao & Ming-Liang Ye & Jun-Yan Li & Qing-Mei He & Han Qiao & Xi-Rong Tan & Jing-Yun Wang & Ye-Lin Liang & Sai-Wei Huang & Shi-Wei He & Ying-Qin Li & Sha Xu & Ying-Qing, 2024. "PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Naijun Miao & Zhuning Wang & Qinlan Wang & Hongyan Xie & Ninghao Yang & Yanzhe Wang & Jin Wang & Haixia Kang & Wenjuan Bai & Yuanyuan Wang & Rui He & Kepeng Yan & Yang Wang & Qiongyi Hu & Zhaoyuan Liu, 2023. "Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Hang Yin & Jian Zheng & Qiuqiu He & Xuan Zhang & Xuzichao Li & Yongjian Ma & Xiao Liang & Jiaqi Gao & Benjamin L. Kocsis & Zhuang Li & Xiang Liu & Neal M. Alto & Long Li & Heng Zhang, 2023. "Insights into the GSDMB-mediated cellular lysis and its targeting by IpaH7.8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Anja Kopp & Gregor Hagelueken & Isabell Jamitzky & Jonas Moecking & Lisa D. J. Schiffelers & Florian I. Schmidt & Matthias Geyer, 2023. "Pyroptosis inhibiting nanobodies block Gasdermin D pore formation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Wenquan Ou & Samantha Stewart & Alisa White & Elyahb A. Kwizera & Jiangsheng Xu & Yuanzhang Fang & James G. Shamul & Changqing Xie & Suliat Nurudeen & Nikki P. Tirada & Xiongbin Lu & Katherine H. R. T, 2023. "In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Abigail R. Gress & Christine E. Ronayne & Joshua M. Thiede & David K. Meyerholz & Samuel Okurut & Julia Stumpf & Tailor V. Mathes & Kenneth Ssebambulidde & David B. Meya & Fiona V. Cresswell & David R, 2023. "Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34036-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.