IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40364-0.html
   My bibliography  Save this article

BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling

Author

Listed:
  • Jiaojiao Bai

    (Chinese Academy of Sciences
    Shanghai Jiao Tong University
    Jiujiang University
    University of Chinese Academy of Sciences)

  • Yuanyuan Zhou

    (Chinese Academy of Sciences
    Shanghai Jiao Tong University
    University of Chinese Academy of Sciences)

  • Jianhang Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Kexin Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yufang Han

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ranran Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yanmin Zou

    (Chinese Academy of Sciences)

  • Mingshuo Du

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dongping Lu

    (Shanghai Jiao Tong University)

Abstract

Pathogen-associated molecular patterns (PAMPs) trigger plant innate immunity that acts as the first line of inducible defense against pathogen infection. A receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) functions as a signaling hub immediately downstream of multiple pattern recognition receptors (PRRs). It is known that PLANT U-BOX PROTEIN 25 (PUB25) and PUB26 ubiquitinate BIK1 and mediate BIK1 degradation. However, how BIK1 homeostasis is maintained is not fully understood. Here, we show that two closely related ubiquitin ligases, RING DOMAIN LIGASE 1 (RGLG1) and RGLG2, preferentially associate with the hypo-phosphorylated BIK1 and promote the association of BIK1 with the co-receptor for several PRRs, BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). PUB25 interacts with RGLG2 and mediates its degradation. In turn, RGLG2 represses the ubiquitin ligase activity of PUB25. RGLG1/2 suppress PUB25-mediated BIK1 degradation, promote BIK1 protein accumulation, and positively regulate immune signaling in a ubiquitin ligase activity-dependent manner. Our work reveals how BIK1 homeostasis is maintained by the interplay of different ubiquitin ligases.

Suggested Citation

  • Jiaojiao Bai & Yuanyuan Zhou & Jianhang Sun & Kexin Chen & Yufang Han & Ranran Wang & Yanmin Zou & Mingshuo Du & Dongping Lu, 2023. "BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40364-0
    DOI: 10.1038/s41467-023-40364-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40364-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40364-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathrin Thor & Shushu Jiang & Erwan Michard & Jeoffrey George & Sönke Scherzer & Shouguang Huang & Julian Dindas & Paul Derbyshire & Nuno Leitão & Thomas A. DeFalco & Philipp Köster & Kerri Hunter & S, 2020. "The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity," Nature, Nature, vol. 585(7826), pages 569-573, September.
    2. Xiyu Ma & Lucas A. N. Claus & Michelle E. Leslie & Kai Tao & Zhiping Wu & Jun Liu & Xiao Yu & Bo Li & Jinggeng Zhou & Daniel V. Savatin & Junmin Peng & Brett M. Tyler & Antje Heese & Eugenia Russinova, 2020. "Ligand-induced monoubiquitination of BIK1 regulates plant immunity," Nature, Nature, vol. 581(7807), pages 199-203, May.
    3. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    4. Tsuneaki Asai & Guillaume Tena & Joulia Plotnikova & Matthew R. Willmann & Wan-Ling Chiu & Lourdes Gomez-Gomez & Thomas Boller & Frederick M. Ausubel & Jen Sheen, 2002. "MAP kinase signalling cascade in Arabidopsis innate immunity," Nature, Nature, vol. 415(6875), pages 977-983, February.
    5. Wang Tian & Congcong Hou & Zhijie Ren & Chao Wang & Fugeng Zhao & Douglas Dahlbeck & Songping Hu & Liying Zhang & Qi Niu & Legong Li & Brian J. Staskawicz & Sheng Luan, 2019. "A calmodulin-gated calcium channel links pathogen patterns to plant immunity," Nature, Nature, vol. 572(7767), pages 131-135, August.
    6. DongHyuk Lee & Neeraj K. Lal & Zuh-Jyh Daniel Lin & Shisong Ma & Jun Liu & Bardo Castro & Tania Toruño & Savithramma P. Dinesh-Kumar & Gitta Coaker, 2020. "Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    7. Lingyao Kong & Jinkui Cheng & Yujuan Zhu & Yanglin Ding & Jingjing Meng & Zhizhong Chen & Qi Xie & Yan Guo & Jigang Li & Shuhua Yang & Zhizhong Gong, 2015. "Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases," Nature Communications, Nature, vol. 6(1), pages 1-13, December.
    8. Delphine Chinchilla & Cyril Zipfel & Silke Robatzek & Birgit Kemmerling & Thorsten Nürnberger & Jonathan D. G. Jones & Georg Felix & Thomas Boller, 2007. "A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence," Nature, Nature, vol. 448(7152), pages 497-500, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Shi & Junjie Yin & Zhangjie Zhao & Hong Yu & Hong Yi & Li Xu & Huimin Tong & Min He & Xiaobo Zhu & Xiang Lu & Qing Xiong & Weitao Li & Yongyan Tang & Qingqing Hou & Li Song & Long Wang & Xiaoqiong, 2024. "Fine-tuning of IPA1 transactivation activity by E3 ligase IPI7-mediated non-proteolytic K29-ubiquitination during Magnaporthe oryzae infection," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yuhang Duan & Zhaoyun Wang & Yuan Fang & Zhangxin Pei & Hong Hu & Qiutao Xu & Hao Liu & Xiaolin Chen & Chaoxi Luo & Junbin Huang & Lu Zheng & Xiaoyang Chen, 2024. "A secreted fungal laccase targets the receptor kinase OsSRF3 to inhibit OsBAK1–OsSRF3-mediated immunity in rice," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Li Lin & Xingrui Zhang & Jialin Fan & Jiawei Li & Sichao Ren & Xin Gu & Panpan Li & Meiling Xu & Jingyi Xu & Wenjing Lei & Dongxiao Liu & Qinfu Sun & Guangqin Cai & Qing-Yong Yang & Youping Wang & Jia, 2024. "Natural variation in BnaA07.MKK9 confers resistance to Sclerotinia stem rot in oilseed rape," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Sheng Yang & Weiwei Cai & Ruijie Wu & Yu Huang & Qiaoling Lu & Hui Wang & Xueying Huang & Yapeng Zhang & Qing Wu & Xingge Cheng & Meiyun Wan & Jingang Lv & Qian Liu & Xiang Zheng & Shaoliang Mou & Dey, 2023. "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Youyou Lu & Xuan Zhang & Liyan Zhao & Hong Liu & Mi Yan & Xiaochen Zhang & Kenji Mochizuki & Shikuan Yang, 2023. "Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    8. Norliza Abu-Bakar & Nor Mustaiqazah Juri & Ros Azrinawati Hana Abu-Bakar & Mohd Zulfadli Sohaime & Rafidah Badrun & Johari Sarip & Mohd Azhar Hassan & Khairulmazmi Ahmad, 2021. "Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 11(1), pages 1-9, March.
    9. Xin Tong & Jia-Jia Zhao & Ya-Lan Feng & Jing-Ze Zou & Jian Ye & Junfeng Liu & Chenggui Han & Dawei Li & Xian-Bing Wang, 2023. "A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    13. Vidhyavathi Raman & Clemencia M. Rojas & Balaji Vasudevan & Kevin Dunning & Jaydeep Kolape & Sunhee Oh & Jianfei Yun & Lishan Yang & Guangming Li & Bikram D. Pant & Qingzhen Jiang & Kirankumar S. Myso, 2022. "Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Jincai Qiu & Yongshan Chen & Ying Feng & Xiaofeng Li & Jinghua Xu & Jinping Jiang, 2023. "Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    15. Arsheed H. Sheikh & Iosif Zacharia & Alonso J. Pardal & Ana Dominguez-Ferreras & Daniela J. Sueldo & Jung-Gun Kim & Alexi Balmuth & Jose R. Gutierrez & Brendon F. Conlan & Najeeb Ullah & Olivia M. Nip, 2023. "Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    18. Chen Bai & Gao-Jie Wang & Xiao-Hui Feng & Qiong Gao & Wei-Qing Wang & Ran Xu & Su-Jie Guo & Shao-Yan Shen & Ming Ma & Wen-Hui Lin & Chun-Ming Liu & Yunhai Li & Xian-Jun Song, 2024. "OsMAPK6 phosphorylation and CLG1 ubiquitylation of GW6a non-additively enhance rice grain size through stabilization of the substrate," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Veronika DUMALASOVÁ & Leona SVOBODOVÁ & Alena HANZALOVÁ, 2012. "Differentially expressed gene transcripts in wheat and barley leaves upon leaf spot infection," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 48(3), pages 108-119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40364-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.