IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49425-4.html
   My bibliography  Save this article

The effector-triggered immunity landscape of tomato against Pseudomonas syringae

Author

Listed:
  • Fabien Lonjon

    (University of Toronto)

  • Yan Lai

    (University of Toronto)

  • Nasrin Askari

    (University of Toronto)

  • Niharikaa Aiyar

    (University of Toronto)

  • Cedoljub Bundalovic-Torma

    (University of Toronto)

  • Bradley Laflamme

    (University of Toronto)

  • Pauline W. Wang

    (University of Toronto
    University of Toronto)

  • Darrell Desveaux

    (University of Toronto
    University of Toronto)

  • David S. Guttman

    (University of Toronto
    University of Toronto)

Abstract

Tomato (Solanum lycopersicum) is one of the world’s most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.

Suggested Citation

  • Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49425-4
    DOI: 10.1038/s41467-024-49425-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49425-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49425-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arsheed H. Sheikh & Iosif Zacharia & Alonso J. Pardal & Ana Dominguez-Ferreras & Daniela J. Sueldo & Jung-Gun Kim & Alexi Balmuth & Jose R. Gutierrez & Brendon F. Conlan & Najeeb Ullah & Olivia M. Nip, 2023. "Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Bruno Pok Man Ngou & Hee-Kyung Ahn & Pingtao Ding & Jonathan D. G. Jones, 2021. "Mutual potentiation of plant immunity by cell-surface and intracellular receptors," Nature, Nature, vol. 592(7852), pages 110-115, April.
    3. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    4. Minhang Yuan & Zeyu Jiang & Guozhi Bi & Kinya Nomura & Menghui Liu & Yiping Wang & Boying Cai & Jian-Min Zhou & Sheng Yang He & Xiu-Fang Xin, 2021. "Pattern-recognition receptors are required for NLR-mediated plant immunity," Nature, Nature, vol. 592(7852), pages 105-109, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Sayaka Matsui & Saki Noda & Keiko Kuwata & Mika Nomoto & Yasuomi Tada & Hidefumi Shinohara & Yoshikatsu Matsubayashi, 2024. "Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    4. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Wenhao Li & Hongwei Zhu & Jinzhu Chen & Binglu Ru & Qin Peng & Jianqiang Miao & Xili Liu, 2024. "PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Li Fan & Katja Fröhlich & Eric Melzer & Rory N. Pruitt & Isabell Albert & Lisha Zhang & Anna Joe & Chenlei Hua & Yanyue Song & Markus Albert & Sang-Tae Kim & Detlef Weigel & Cyril Zipfel & Eunyoung Ch, 2022. "Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    8. Gengshen Chen & Bao Zhang & Junqiang Ding & Hongze Wang & Ce Deng & Jiali Wang & Qianhui Yang & Qianyu Pi & Ruyang Zhang & Haoyu Zhai & Junfei Dong & Junshi Huang & Jiabao Hou & Junhua Wu & Jiamin Que, 2022. "Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    11. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    12. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    14. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    15. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    16. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    17. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    18. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    19. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    20. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49425-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.