IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6875d10.1038_415977a.html
   My bibliography  Save this article

MAP kinase signalling cascade in Arabidopsis innate immunity

Author

Listed:
  • Tsuneaki Asai

    (Harvard Medical School, Massachusetts General Hospital)

  • Guillaume Tena

    (Harvard Medical School, Massachusetts General Hospital)

  • Joulia Plotnikova

    (Harvard Medical School, Massachusetts General Hospital)

  • Matthew R. Willmann

    (Harvard Medical School, Massachusetts General Hospital)

  • Wan-Ling Chiu

    (Harvard Medical School, Massachusetts General Hospital)

  • Lourdes Gomez-Gomez

    (Instituto de Desarrollo Regional, Sección de Biotecnología, Campus Universitario s/n)

  • Thomas Boller

    (Friedrich Miescher-Institute)

  • Frederick M. Ausubel

    (Harvard Medical School, Massachusetts General Hospital)

  • Jen Sheen

    (Harvard Medical School, Massachusetts General Hospital)

Abstract

There is remarkable conservation in the recognition of pathogen-associated molecular patterns (PAMPs) by innate immune responses of plants, insects and mammals. We developed an Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals. Here we identify a complete plant MAP kinase cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) and WRKY22/WRKY29 transcription factors that function downstream of the flagellin receptor FLS2, a leucine-rich-repeat (LRR) receptor kinase. Activation of this MAPK cascade confers resistance to both bacterial and fungal pathogens, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.

Suggested Citation

  • Tsuneaki Asai & Guillaume Tena & Joulia Plotnikova & Matthew R. Willmann & Wan-Ling Chiu & Lourdes Gomez-Gomez & Thomas Boller & Frederick M. Ausubel & Jen Sheen, 2002. "MAP kinase signalling cascade in Arabidopsis innate immunity," Nature, Nature, vol. 415(6875), pages 977-983, February.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6875:d:10.1038_415977a
    DOI: 10.1038/415977a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415977a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415977a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaojiao Bai & Yuanyuan Zhou & Jianhang Sun & Kexin Chen & Yufang Han & Ranran Wang & Yanmin Zou & Mingshuo Du & Dongping Lu, 2023. "BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Vidhyavathi Raman & Clemencia M. Rojas & Balaji Vasudevan & Kevin Dunning & Jaydeep Kolape & Sunhee Oh & Jianfei Yun & Lishan Yang & Guangming Li & Bikram D. Pant & Qingzhen Jiang & Kirankumar S. Myso, 2022. "Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6875:d:10.1038_415977a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.