IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39478-2.html
   My bibliography  Save this article

Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands

Author

Listed:
  • Jianghao Zhang

    (Washington State University
    Research Center for Eco-environmental Sciences, Chinese Academy of Sciences)

  • Wenda Hu

    (Washington State University
    Pacific Northwest National Laboratory)

  • Binbin Qian

    (Yancheng Teachers University
    Monash University)

  • Houqian Li

    (Washington State University)

  • Berlin Sudduth

    (Washington State University)

  • Mark Engelhard

    (Pacific Northwest National Laboratory)

  • Lian Zhang

    (Monash University)

  • Jianzhi Hu

    (Washington State University
    Pacific Northwest National Laboratory)

  • Junming Sun

    (Washington State University)

  • Changbin Zhang

    (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences)

  • Hong He

    (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences)

  • Yong Wang

    (Washington State University
    Pacific Northwest National Laboratory)

Abstract

Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe ( 90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.

Suggested Citation

  • Jianghao Zhang & Wenda Hu & Binbin Qian & Houqian Li & Berlin Sudduth & Mark Engelhard & Lian Zhang & Jianzhi Hu & Junming Sun & Changbin Zhang & Hong He & Yong Wang, 2023. "Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39478-2
    DOI: 10.1038/s41467-023-39478-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39478-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39478-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon H. Pang & Carolyn A. Schoenbaum & Daniel K. Schwartz & J. Will Medlin, 2013. "Directing reaction pathways by catalyst active-site selection using self-assembled monolayers," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    2. Qineng Xia & Zongjia Chen & Yi Shao & Xueqing Gong & Haifeng Wang & Xiaohui Liu & Stewart F. Parker & Xue Han & Sihai Yang & Yanqin Wang, 2016. "Direct hydrodeoxygenation of raw woody biomass into liquid alkanes," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    3. Cheng-Tar Wu & Kai Man Kerry Yu & Fenglin Liao & Neil Young & Peter Nellist & Andrew Dent & Anna Kroner & Shik Chi Edman Tsang, 2012. "A non-syn-gas catalytic route to methanol production," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Anubhab Acharya & Trimbak Baliram Mete & Nitee Kumari & Youngkwan Yoon & Hayoung Jeong & Taehyung Jang & Byeongju Song & Hee Cheul Choi & Jeong Woo Han & Yoonsoo Pang & Yongju Yun & Amit Kumar & In Su, 2023. "Ultrathin covalent organic overlayers on metal nanocrystals for highly selective plasmonic photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    4. Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
    5. Li, Bingshuo & Liu, Yixuan & Yang, Tianhua & Feng, Bixuan & Kai, Xingping & Wang, Shurong & Li, Rundong, 2021. "Aqueous phase reforming of biocrude derived from lignocellulose hydrothermal liquefaction: Conditions optimization and mechanism study," Renewable Energy, Elsevier, vol. 175(C), pages 98-107.
    6. Zhiyou Zong & Scott Mazurkewich & Caroline S. Pereira & Haohao Fu & Wensheng Cai & Xueguang Shao & Munir S. Skaf & Johan Larsbrink & Leila Lo Leggio, 2022. "Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    8. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Miao Guo & Sanjeevi Jayakumar & Mengfei Luo & Xiangtao Kong & Chunzhi Li & He Li & Jian Chen & Qihua Yang, 2022. "The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Chen, Yunan & Yi, Lei & Wei, Wenwen & Jin, Hui & Guo, Liejin, 2022. "Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor," Energy, Elsevier, vol. 238(PA).
    11. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    12. Yiwen Yang & Cheng Zhang & Z. Conrad Zhang, 2018. "Advances in catalytic transformations of carbohydrates and lignin in ionic liquids and mechanistic studies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39478-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.