IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53577-8.html
   My bibliography  Save this article

Van der Waals interactions between nonpolar alkyl chains and polar oxide surfaces prevent catalyst deactivation in aldehyde gas sensing

Author

Listed:
  • Kentaro Nakamura

    (The University of Tokyo
    Kyushu University)

  • Tsunaki Takahashi

    (The University of Tokyo)

  • Takuro Hosomi

    (The University of Tokyo)

  • Wataru Tanaka

    (The University of Tokyo)

  • Yu Yamaguchi

    (The University of Tokyo)

  • Jiangyang Liu

    (The University of Tokyo)

  • Masaki Kanai

    (Kyushu University)

  • Yuta Tsuji

    (Kyushu University)

  • Takeshi Yanagida

    (The University of Tokyo
    Kyushu University)

Abstract

Catalysis-based electrical sensing of volatile organic compounds on metal oxide surfaces is a powerful method for molecular discrimination. However, catalyst deactivation caused by the poisoning of catalytic sites by analytes and/or catalyzed products remains a challenge. This study highlights the underestimated role of van der Waals interactions between hydrophobic aliphatic alkyl chains and hydrophilic ZnO surfaces in mitigating catalyst deactivation during aliphatic aldehyde sensing. By immobilizing octadecylphosphonic acid (ODPA) on ZnO nanowire sensors, recovery times for nonanal detection are significantly reduced without compromising sensitivity. Temperature-programmed measurements demonstrate a reduction in desorption temperature of carboxylates on ODPA-modified ZnO to below 150 °C, whereas carboxylates on bare ZnO remain above 300 °C, indicating a significant decrease in catalyst deactivation. Density functional theory calculations reveal that accumulated van der Waals interactions between alkyl chains and ZnO surfaces significantly contributed to adsorption molecular kinetics. IR spectroscopy using deuterated self-assembled monolayers (SAMs) reveals conformational changes of alkyl chains within the SAMs caused by aldehyde adsorption, supporting the suggested adsorption kinetics. A model is proposed based on the dynamic surface-covering by alkyl chains destabilizes catalytically oxidized carboxylic acids.

Suggested Citation

  • Kentaro Nakamura & Tsunaki Takahashi & Takuro Hosomi & Wataru Tanaka & Yu Yamaguchi & Jiangyang Liu & Masaki Kanai & Yuta Tsuji & Takeshi Yanagida, 2024. "Van der Waals interactions between nonpolar alkyl chains and polar oxide surfaces prevent catalyst deactivation in aldehyde gas sensing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53577-8
    DOI: 10.1038/s41467-024-53577-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53577-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53577-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon H. Pang & Carolyn A. Schoenbaum & Daniel K. Schwartz & J. Will Medlin, 2013. "Directing reaction pathways by catalyst active-site selection using self-assembled monolayers," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anubhab Acharya & Trimbak Baliram Mete & Nitee Kumari & Youngkwan Yoon & Hayoung Jeong & Taehyung Jang & Byeongju Song & Hee Cheul Choi & Jeong Woo Han & Yoonsoo Pang & Yongju Yun & Amit Kumar & In Su, 2023. "Ultrathin covalent organic overlayers on metal nanocrystals for highly selective plasmonic photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jianghao Zhang & Wenda Hu & Binbin Qian & Houqian Li & Berlin Sudduth & Mark Engelhard & Lian Zhang & Jianzhi Hu & Junming Sun & Changbin Zhang & Hong He & Yong Wang, 2023. "Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Miao Guo & Sanjeevi Jayakumar & Mengfei Luo & Xiangtao Kong & Chunzhi Li & He Li & Jian Chen & Qihua Yang, 2022. "The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    5. Jihang Yu & Xinwei Yang & Yanyan Jia & Zhi-Qiang Wang & Wenbo Li & Yongjun Jiang & Sheng Dai & Wangcheng Zhan, 2024. "Regulating socketed geometry of nanoparticles on perovskite oxide supports for enhanced stability in oxidation reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53577-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.