IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29299-0.html
   My bibliography  Save this article

The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation

Author

Listed:
  • Miao Guo

    (Chinese Academy of Sciences)

  • Sanjeevi Jayakumar

    (Chinese Academy of Sciences)

  • Mengfei Luo

    (Zhejiang Normal University)

  • Xiangtao Kong

    (Anyang Normal University)

  • Chunzhi Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • He Li

    (Chinese Academy of Sciences)

  • Jian Chen

    (Zhejiang Normal University)

  • Qihua Yang

    (Chinese Academy of Sciences
    Zhejiang Normal University)

Abstract

The utilization of weak interactions to improve the catalytic performance of supported metal catalysts is an important strategy for catalysts design, but still remains a big challenge. In this work, the weak interactions nearby the Pd nanoparticles (NPs) are finely tuned by using a series of imine-linked covalent organic frameworks (COFs) with different conjugation skeletons. The Pd NPs embedded in pyrene-COF are ca. 3 to 10-fold more active than those in COFs without pyrene in the hydrogenation of aromatic ketones/aldehydes, quinolines and nitrobenzene, though Pd have similar size and surface structure. With acetophenone (AP) hydrogenation as a model reaction, systematic studies imply that the π-π interaction of AP and pyrene rings in the vicinity of Pd NPs could significantly reduce the activation barrier in the rate-determining step. This work highlights the important role of non-covalent interactions beyond the active sites in modulating the catalytic performance of supported metal NPs.

Suggested Citation

  • Miao Guo & Sanjeevi Jayakumar & Mengfei Luo & Xiangtao Kong & Chunzhi Li & He Li & Jian Chen & Qihua Yang, 2022. "The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29299-0
    DOI: 10.1038/s41467-022-29299-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29299-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29299-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon H. Pang & Carolyn A. Schoenbaum & Daniel K. Schwartz & J. Will Medlin, 2013. "Directing reaction pathways by catalyst active-site selection using self-assembled monolayers," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    2. Meiting Zhao & Kuo Yuan & Yun Wang & Guodong Li & Jun Guo & Lin Gu & Wenping Hu & Huijun Zhao & Zhiyong Tang, 2016. "Metal–organic frameworks as selectivity regulators for hydrogenation reactions," Nature, Nature, vol. 539(7627), pages 76-80, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Zhai & Sara T. Gebre & Bo Chen & Dan Xu & Junze Chen & Zijian Li & Yawei Liu & Hua Yang & Chongyi Ling & Yiyao Ge & Wei Zhai & Changsheng Chen & Lu Ma & Qinghua Zhang & Xuefei Li & Yujie Yan & Xiny, 2023. "Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Anubhab Acharya & Trimbak Baliram Mete & Nitee Kumari & Youngkwan Yoon & Hayoung Jeong & Taehyung Jang & Byeongju Song & Hee Cheul Choi & Jeong Woo Han & Yoonsoo Pang & Yongju Yun & Amit Kumar & In Su, 2023. "Ultrathin covalent organic overlayers on metal nanocrystals for highly selective plasmonic photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    4. Kentaro Nakamura & Tsunaki Takahashi & Takuro Hosomi & Wataru Tanaka & Yu Yamaguchi & Jiangyang Liu & Masaki Kanai & Yuta Tsuji & Takeshi Yanagida, 2024. "Van der Waals interactions between nonpolar alkyl chains and polar oxide surfaces prevent catalyst deactivation in aldehyde gas sensing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chuanhui Huang & Xinglong Shang & Xinyuan Zhou & Zhe Zhang & Xing Huang & Yang Lu & Mingchao Wang & Markus Löffler & Zhongquan Liao & Haoyuan Qi & Ute Kaiser & Dana Schwarz & Andreas Fery & Tie Wang &, 2023. "Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Minchao Liu & Cheng Shang & Tiancong Zhao & Hongyue Yu & Yufang Kou & Zirui Lv & Mengmeng Hou & Fan Zhang & Qiaowei Li & Dongyuan Zhao & Xiaomin Li, 2023. "Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jianghao Zhang & Wenda Hu & Binbin Qian & Houqian Li & Berlin Sudduth & Mark Engelhard & Lian Zhang & Jianzhi Hu & Junming Sun & Changbin Zhang & Hong He & Yong Wang, 2023. "Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Xiao-Jue Bai & Caoyu Yang & Zhiyong Tang, 2024. "Enabling long-distance hydrogen spillover in nonreducible metal-organic frameworks for catalytic reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xiao Zhan & Miao Li & Xiaolin Zhao & Yaning Wang & Sha Li & Weiwei Wang & Jiande Lin & Zi-Ang Nan & Jiawei Yan & Zhefei Sun & Haodong Liu & Fei Wang & Jiayu Wan & Jianjun Liu & Qiaobao Zhang & Li Zhan, 2024. "Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Wenlong Xu & Yuwei Zhang & Junjun Wang & Yixiu Xu & Li Bian & Qiang Ju & Yuemin Wang & Zhenlan Fang, 2022. "Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29299-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.