IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11162.html
   My bibliography  Save this article

Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

Author

Listed:
  • Qineng Xia

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

  • Zongjia Chen

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

  • Yi Shao

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

  • Xueqing Gong

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

  • Haifeng Wang

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

  • Xiaohui Liu

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

  • Stewart F. Parker

    (ISIS Facility, STFC Rutherford Appleton Laboratory)

  • Xue Han

    (School of Chemistry, University of Nottingham
    School of Chemistry, University of Manchester)

  • Sihai Yang

    (School of Chemistry, University of Manchester)

  • Yanqin Wang

    (Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology)

Abstract

Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

Suggested Citation

  • Qineng Xia & Zongjia Chen & Yi Shao & Xueqing Gong & Haifeng Wang & Xiaohui Liu & Stewart F. Parker & Xue Han & Sihai Yang & Yanqin Wang, 2016. "Direct hydrodeoxygenation of raw woody biomass into liquid alkanes," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11162
    DOI: 10.1038/ncomms11162
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11162
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chen, Yunan & Yi, Lei & Wei, Wenwen & Jin, Hui & Guo, Liejin, 2022. "Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor," Energy, Elsevier, vol. 238(PA).
    3. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    4. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    5. Jogi, Ramakrishna & Samikannu, Ajaikumar & Mäki-Arvela, Päivi & Virtanen, Pasi & Hemming, Jarl & Smeds, Annika & Mukesh, Chandrakant & Lestander, Torbjörn A. & Xu, Chunlin & Mikkola, Jyri-Pekka, 2024. "Liquefaction of lignocellulosic biomass into phenolic monomers and dimers over multifunctional Pd/NbOPO4 catalyst," Renewable Energy, Elsevier, vol. 233(C).
    6. Yiwen Yang & Cheng Zhang & Z. Conrad Zhang, 2018. "Advances in catalytic transformations of carbohydrates and lignin in ionic liquids and mechanistic studies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    7. Zhiyou Zong & Scott Mazurkewich & Caroline S. Pereira & Haohao Fu & Wensheng Cai & Xueguang Shao & Munir S. Skaf & Johan Larsbrink & Leila Lo Leggio, 2022. "Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
    10. Li, Bingshuo & Liu, Yixuan & Yang, Tianhua & Feng, Bixuan & Kai, Xingping & Wang, Shurong & Li, Rundong, 2021. "Aqueous phase reforming of biocrude derived from lignocellulose hydrothermal liquefaction: Conditions optimization and mechanism study," Renewable Energy, Elsevier, vol. 175(C), pages 98-107.
    11. Jianghao Zhang & Wenda Hu & Binbin Qian & Houqian Li & Berlin Sudduth & Mark Engelhard & Lian Zhang & Jianzhi Hu & Junming Sun & Changbin Zhang & Hong He & Yong Wang, 2023. "Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.