IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033085.html
   My bibliography  Save this article

Selective direct deoxygenation of m-cresol on Heusler alloy catalysts via precise control of electronic structure: An integrated density function theory and microkinetic modeling study

Author

Listed:
  • Zhou, Tao
  • Ma, Shenggui
  • Peng, Qin
  • Liu, Hongying
  • Dou, Tingying
  • Jiang, Xia

Abstract

Directional designing a catalyst with high direct deoxygenation selectivity of Phenols during hydrodeoxygenation (HDO), remains a formidable challenge in cost-effectively converting biomass to bio-fuel and chemicals. Herein, we evaluated for the first time the catalytic performance of Heusler alloy surfaces for HDO process of m-cresol at the atomic scale. The direct deoxygenation (DDO) route of m-cresol on the Co2FeGa (110) surface at 573.15 K exhibited relatively low kinetic (1.20 eV) and thermodynamic (−0.04 eV) barriers, leading to high selectivity (near 100 %) for toluene production. The degree of rate control (DRC) analysis revealed that direct dehydroxylation constituted the rate-limiting elementary reaction. Additionally, by tailoring the Ga and Ge ratio on the Co2FeGa1-xGex (110) surface, an almost linear relationship (R2 = 0.95) was discovered between activation energy of C-OH and the d-band center energy of the Fe element in the unit cell. Both the activation energy of C-OH and d-band center energy of the Fe decreased with increasing Ge/Ga substitution ratio. This research unveils for the first time the catalytic performance of Heusler alloy for the selective direct deoxygenation of m-cresol, but also suggest the possibility tuning d-band center of Heusler alloys to precisely tailor the selectivity of DDO during HDO process.

Suggested Citation

  • Zhou, Tao & Ma, Shenggui & Peng, Qin & Liu, Hongying & Dou, Tingying & Jiang, Xia, 2024. "Selective direct deoxygenation of m-cresol on Heusler alloy catalysts via precise control of electronic structure: An integrated density function theory and microkinetic modeling study," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033085
    DOI: 10.1016/j.energy.2024.133532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qineng Xia & Zongjia Chen & Yi Shao & Xueqing Gong & Haifeng Wang & Xiaohui Liu & Stewart F. Parker & Xue Han & Sihai Yang & Yanqin Wang, 2016. "Direct hydrodeoxygenation of raw woody biomass into liquid alkanes," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    2. Yi Shao & Qineng Xia & Lin Dong & Xiaohui Liu & Xue Han & Stewart F. Parker & Yongqiang Cheng & Luke L. Daemen & Anibal J. Ramirez-Cuesta & Sihai Yang & Yanqin Wang, 2017. "Selective production of arenes via direct lignin upgrading over a niobium-based catalyst," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Haohong Duan & Juncai Dong & Xianrui Gu & Yung-Kang Peng & Wenxing Chen & Titipong Issariyakul & William K. Myers & Meng-Jung Li & Ni Yi & Alexander F. R. Kilpatrick & Yu Wang & Xusheng Zheng & Shufan, 2017. "Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    4. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    5. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Wang Gao & Yun Chen & Bo Li & Shan-Ping Liu & Xin Liu & Qing Jiang, 2020. "Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    3. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    4. Zhang, Chengzhi & Zhang, Xing & Wu, Jingfeng & Zhu, Lingjun & Wang, Shurong, 2022. "Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx," Applied Energy, Elsevier, vol. 328(C).
    5. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    7. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    8. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    9. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    10. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    11. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    12. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    13. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    14. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    15. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    16. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    17. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    18. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    19. Jafary, Tahereh & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Kim, Byung Hong & Md Jahim, Jamaliah & Ismail, Manal & Lim, Swee Su, 2015. "Biocathode in microbial electrolysis cell; present status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 23-33.
    20. Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.