IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39302-x.html
   My bibliography  Save this article

Atomic motifs govern the decoration of grain boundaries by interstitial solutes

Author

Listed:
  • Xuyang Zhou

    (Max-Planck-Institut für Eisenforschung GmbH
    Max-Planck-Institut für Eisenforschung GmbH)

  • Ali Ahmadian

    (Max-Planck-Institut für Eisenforschung GmbH)

  • Baptiste Gault

    (Max-Planck-Institut für Eisenforschung GmbH
    Royal School of Mines, Imperial College London)

  • Colin Ophus

    (National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Christian H. Liebscher

    (Max-Planck-Institut für Eisenforschung GmbH)

  • Gerhard Dehm

    (Max-Planck-Institut für Eisenforschung GmbH)

  • Dierk Raabe

    (Max-Planck-Institut für Eisenforschung GmbH)

Abstract

Grain boundaries, the two-dimensional defects between differently oriented crystals, tend to preferentially attract solutes for segregation. Solute segregation has a significant effect on the mechanical and transport properties of materials. At the atomic level, however, the interplay of structure and composition of grain boundaries remains elusive, especially with respect to light interstitial solutes like B and C. Here, we use Fe alloyed with B and C to exploit the strong interdependence of interface structure and chemistry via charge-density imaging and atom probe tomography methods. Direct imaging and quantifying of light interstitial solutes at grain boundaries provide insight into decoration tendencies governed by atomic motifs. We find that even a change in the inclination of the grain boundary plane with identical misorientation impacts grain boundary composition and atomic arrangement. Thus, it is the smallest structural hierarchical level, the atomic motifs, that controls the most important chemical properties of the grain boundaries. This insight not only closes a missing link between the structure and chemical composition of such defects but also enables the targeted design and passivation of the chemical state of grain boundaries to free them from their role as entry gates for corrosion, hydrogen embrittlement, or mechanical failure.

Suggested Citation

  • Xuyang Zhou & Ali Ahmadian & Baptiste Gault & Colin Ophus & Christian H. Liebscher & Gerhard Dehm & Dierk Raabe, 2023. "Atomic motifs govern the decoration of grain boundaries by interstitial solutes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39302-x
    DOI: 10.1038/s41467-023-39302-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39302-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39302-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shun Kondo & Akihito Ishihara & Eita Tochigi & Naoya Shibata & Yuichi Ikuhara, 2019. "Direct observation of atomic-scale fracture path within ceramic grain boundary core," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    2. Wenpei Gao & Christopher Addiego & Hui Wang & Xingxu Yan & Yusheng Hou & Dianxiang Ji & Colin Heikes & Yi Zhang & Linze Li & Huaixun Huyan & Thomas Blum & Toshihiro Aoki & Yuefeng Nie & Darrell G. Sch, 2019. "Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy," Nature, Nature, vol. 575(7783), pages 480-484, November.
    3. Dierk Raabe & C. Cem Tasan & Elsa A. Olivetti, 2019. "Strategies for improving the sustainability of structural metals," Nature, Nature, vol. 575(7781), pages 64-74, November.
    4. Thorsten Meiners & Timofey Frolov & Robert E. Rudd & Gerhard Dehm & Christian H. Liebscher, 2020. "Observations of grain-boundary phase transformations in an elemental metal," Nature, Nature, vol. 579(7799), pages 375-378, March.
    5. A. Ahmadian & D. Scheiber & X. Zhou & B. Gault & C. H. Liebscher & L. Romaner & G. Dehm, 2021. "Aluminum depletion induced by co-segregation of carbon and boron in a bcc-iron grain boundary," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Timofey Frolov & David L. Olmsted & Mark Asta & Yuri Mishin, 2013. "Structural phase transformations in metallic grain boundaries," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    7. Zhongchang Wang & Mitsuhiro Saito & Keith P. McKenna & Lin Gu & Susumu Tsukimoto & Alexander L. Shluger & Yuichi Ikuhara, 2011. "Atom-resolved imaging of ordered defect superstructures at individual grain boundaries," Nature, Nature, vol. 479(7373), pages 380-383, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enze Chen & Tae Wook Heo & Brandon C. Wood & Mark Asta & Timofey Frolov, 2024. "Grand canonically optimized grain boundary phases in hexagonal close-packed titanium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Lena Langenohl & Tobias Brink & Rodrigo Freitas & Timofey Frolov & Gerhard Dehm & Christian H. Liebscher, 2022. "Dual phase patterning during a congruent grain boundary phase transition in elemental copper," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    4. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Jiake Wei & Bin Feng & Eita Tochigi & Naoya Shibata & Yuichi Ikuhara, 2022. "Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Khashayar Razghandi & Emad Yaghmaei, 2020. "Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    8. Takehito Seki & Toshihiro Futazuka & Nobusato Morishige & Ryo Matsubara & Yuichi Ikuhara & Naoya Shibata, 2023. "Incommensurate grain-boundary atomic structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Igor Tsukerman, 2021. "Computational Electromagnetics: A Miscellany," J, MDPI, vol. 4(4), pages 1-16, December.
    10. A. Ahmadian & D. Scheiber & X. Zhou & B. Gault & C. H. Liebscher & L. Romaner & G. Dehm, 2021. "Aluminum depletion induced by co-segregation of carbon and boron in a bcc-iron grain boundary," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Rahmani, Amir & Aboojafari, Roohallah & Bonyadi Naeini, Ali & Mashayekh, Javad, 2024. "Adoption of digital innovation for resource efficiency and sustainability in the metal industry," Resources Policy, Elsevier, vol. 90(C).
    12. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Roland W. Scholz & Gerald Steiner, 2022. "The role of transdisciplinarity for mineral economics and mineral resource management: coping with fallacies related to phosphorus in science and practice," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 745-763, December.
    14. Farhan Ashraf & Arijit Lodh & Emanuele Pagone & Gustavo M. Castelluccio, 2023. "Revitalising Metallic Materials: A Path towards a Sustainable Circular Economy," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    15. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Andreas Leitherer & Angelo Ziletti & Luca M. Ghiringhelli, 2021. "Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    17. Ali Zakeri & Kenneth S. Coley & Leili Tafaghodi, 2023. "Hydrogen-Based Direct Reduction of Iron Oxides: A Review on the Influence of Impurities," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    18. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Chao Yang & Rebecca Pons & Wilfried Sigle & Hongguang Wang & Eva Benckiser & Gennady Logvenov & Bernhard Keimer & Peter A. Aken, 2024. "Direct observation of strong surface reconstruction in partially reduced nickelate films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Riga Wu & Yuan Yu & Shuo Jia & Chongjian Zhou & Oana Cojocaru-Mirédin & Matthias Wuttig, 2023. "Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39302-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.