IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30922-3.html
   My bibliography  Save this article

Dual phase patterning during a congruent grain boundary phase transition in elemental copper

Author

Listed:
  • Lena Langenohl

    (Max-Planck-Institut für Eisenforschung GmbH)

  • Tobias Brink

    (Max-Planck-Institut für Eisenforschung GmbH)

  • Rodrigo Freitas

    (Massachusetts Institute of Technology)

  • Timofey Frolov

    (Lawrence Livermore National Laboratory)

  • Gerhard Dehm

    (Max-Planck-Institut für Eisenforschung GmbH)

  • Christian H. Liebscher

    (Max-Planck-Institut für Eisenforschung GmbH)

Abstract

The phase behavior of grain boundaries can have a strong influence on interfacial properties. Little is known about the emergence of grain boundary phases in elemental metal systems and how they transform. Here, we observe the nanoscale patterning of a grain boundary by two alternating grain boundary phases with distinct atomic structures in elemental copper by atomic resolution imaging. The same grain boundary phases are found by computational grain boundary structure search indicating a first-order transformation. Finite temperature atomistic simulations reveal a congruent, diffusionless transition between these phases under ambient pressure. The patterning of the grain boundary at room temperature is dominated by the grain boundary phase junctions separating the phase segments. Our analysis suggests that the reduced mobility of the phase junctions at low temperatures kinetically limits the transformation, but repulsive elastic interactions between them and disconnections could additionally stabilize the pattern formation.

Suggested Citation

  • Lena Langenohl & Tobias Brink & Rodrigo Freitas & Timofey Frolov & Gerhard Dehm & Christian H. Liebscher, 2022. "Dual phase patterning during a congruent grain boundary phase transition in elemental copper," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30922-3
    DOI: 10.1038/s41467-022-30922-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30922-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30922-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thuc Hue Ly & David J. Perello & Jiong Zhao & Qingming Deng & Hyun Kim & Gang Hee Han & Sang Hoon Chae & Hye Yun Jeong & Young Hee Lee, 2016. "Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    2. Thorsten Meiners & Timofey Frolov & Robert E. Rudd & Gerhard Dehm & Christian H. Liebscher, 2020. "Observations of grain-boundary phase transformations in an elemental metal," Nature, Nature, vol. 579(7799), pages 375-378, March.
    3. Qiang Zhu & Amit Samanta & Bingxi Li & Robert E. Rudd & Timofey Frolov, 2018. "Predicting phase behavior of grain boundaries with evolutionary search and machine learning," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Timofey Frolov & David L. Olmsted & Mark Asta & Yuri Mishin, 2013. "Structural phase transformations in metallic grain boundaries," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enze Chen & Tae Wook Heo & Brandon C. Wood & Mark Asta & Timofey Frolov, 2024. "Grand canonically optimized grain boundary phases in hexagonal close-packed titanium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Takehito Seki & Toshihiro Futazuka & Nobusato Morishige & Ryo Matsubara & Yuichi Ikuhara & Naoya Shibata, 2023. "Incommensurate grain-boundary atomic structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Xuyang Zhou & Ali Ahmadian & Baptiste Gault & Colin Ophus & Christian H. Liebscher & Gerhard Dehm & Dierk Raabe, 2023. "Atomic motifs govern the decoration of grain boundaries by interstitial solutes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jiake Wei & Bin Feng & Eita Tochigi & Naoya Shibata & Yuichi Ikuhara, 2022. "Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Andreas Leitherer & Angelo Ziletti & Luca M. Ghiringhelli, 2021. "Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Riga Wu & Yuan Yu & Shuo Jia & Chongjian Zhou & Oana Cojocaru-Mirédin & Matthias Wuttig, 2023. "Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Giovanni Liberto & Ángel Morales-García & Stefan T. Bromley, 2022. "An unconstrained approach to systematic structural and energetic screening of materials interfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30922-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.