IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39253-3.html
   My bibliography  Save this article

Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure

Author

Listed:
  • Danielle Rasooly

    (Harvard Medical School
    VA Boston Healthcare System)

  • Gina M. Peloso

    (VA Boston Healthcare System
    Boston University School of Public Health)

  • Alexandre C. Pereira

    (University of São Paulo
    Harvard University)

  • Hesam Dashti

    (Harvard Medical School
    Broad Institute of MIT and Harvard)

  • Claudia Giambartolomei

    (Health Data Science Centre, Human Technopole
    Istituto Italiano di Tecnologia)

  • Eleanor Wheeler

    (University of Cambridge, Addenbrookes Hospital)

  • Nay Aung

    (Queen Mary University of London
    St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield)

  • Brian R. Ferolito

    (VA Boston Healthcare System)

  • Maik Pietzner

    (University of Cambridge, Addenbrookes Hospital
    Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin
    Precision Healthcare University Research Institute, Queen Mary University of London)

  • Eric H. Farber-Eger

    (Vanderbilt University Medical Center)

  • Quinn Stanton Wells

    (Biomedical Informatics, and Pharmacology)

  • Nicole M. Kosik

    (VA Boston Healthcare System)

  • Liam Gaziano

    (VA Boston Healthcare System
    University of Cambridge, Worts Causeway)

  • Daniel C. Posner

    (VA Boston Healthcare System)

  • A. Patrícia Bento

    (European Bioinformatics Institute, Wellcome Genome Campus)

  • Qin Hui

    (Emory University Rollins School of Public Health
    Atlanta VA Health Care System)

  • Chang Liu

    (Emory University Rollins School of Public Health)

  • Krishna Aragam

    (VA Boston Healthcare System
    Broad Institute of MIT and Harvard
    Massachusetts General Hospital)

  • Zeyuan Wang

    (Emory University Rollins School of Public Health)

  • Brian Charest

    (VA Boston Healthcare System)

  • Jennifer E. Huffman

    (VA Boston Healthcare System)

  • Peter W. F. Wilson

    (Atlanta VA Health Care System
    Emory University School of Medicine)

  • Lawrence S. Phillips

    (Atlanta VA Health Care System
    Emory University)

  • John Whittaker

    (University of Cambridge)

  • Patricia B. Munroe

    (Queen Mary University of London, Charterhouse Square
    Queen Mary University of London)

  • Steffen E. Petersen

    (St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield
    Queen Mary University of London, Charterhouse Square)

  • Kelly Cho

    (Harvard Medical School
    VA Boston Healthcare System)

  • Andrew R. Leach

    (European Bioinformatics Institute, Wellcome Genome Campus)

  • María Paula Magariños

    (European Bioinformatics Institute, Wellcome Genome Campus)

  • John Michael Gaziano

    (Harvard Medical School
    VA Boston Healthcare System)

  • Claudia Langenberg

    (University of Cambridge, Addenbrookes Hospital
    Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin
    Precision Healthcare University Research Institute, Queen Mary University of London)

  • Yan V. Sun

    (Emory University Rollins School of Public Health
    Atlanta VA Health Care System
    Emory University School of Medicine, 1639 Pierce Dr NE)

  • Jacob Joseph

    (VA Providence Healthcare System
    Warren Alpert Medical School of Brown University)

  • Juan P. Casas

    (Harvard Medical School
    VA Boston Healthcare System)

Abstract

We conduct a large-scale meta-analysis of heart failure genome-wide association studies (GWAS) consisting of over 90,000 heart failure cases and more than 1 million control individuals of European ancestry to uncover novel genetic determinants for heart failure. Using the GWAS results and blood protein quantitative loci, we perform Mendelian randomization and colocalization analyses on human proteins to provide putative causal evidence for the role of druggable proteins in the genesis of heart failure. We identify 39 genome-wide significant heart failure risk variants, of which 18 are previously unreported. Using a combination of Mendelian randomization proteomics and genetic cis-only colocalization analyses, we identify 10 additional putatively causal genes for heart failure. Findings from GWAS and Mendelian randomization-proteomics identify seven (CAMK2D, PRKD1, PRKD3, MAPK3, TNFSF12, APOC3 and NAE1) proteins as potential targets for interventions to be used in primary prevention of heart failure.

Suggested Citation

  • Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39253-3
    DOI: 10.1038/s41467-023-39253-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39253-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39253-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    2. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. James P. Pirruccello & Alexander Bick & Minxian Wang & Mark Chaffin & Samuel Friedman & Jie Yao & Xiuqing Guo & Bharath Ambale Venkatesh & Kent D. Taylor & Wendy S. Post & Stephen Rich & Joao A. C. Li, 2020. "Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Angli Xue & Yang Wu & Zhihong Zhu & Futao Zhang & Kathryn E. Kemper & Zhili Zheng & Loic Yengo & Luke R. Lloyd-Jones & Julia Sidorenko & Yeda Wu & Allan F. McRae & Peter M. Visscher & Jian Zeng & Jian, 2018. "Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    5. Hélène Choquet & Seyyedhassan Paylakhi & Stephen C. Kneeland & Khanh K. Thai & Thomas J. Hoffmann & Jie Yin & Mark N. Kvale & Yambazi Banda & Nicholas G. Tolman & Pete A. Williams & Catherine Schaefer, 2018. "A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    6. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Sarah E. Graham & Shoa L. Clarke & Kuan-Han H. Wu & Stavroula Kanoni & Greg J. M. Zajac & Shweta Ramdas & Ida Surakka & Ioanna Ntalla & Sailaja Vedantam & Thomas W. Winkler & Adam E. Locke & Eirini Ma, 2021. "The power of genetic diversity in genome-wide association studies of lipids," Nature, Nature, vol. 600(7890), pages 675-679, December.
    8. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    9. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    10. Kira J. Stanzick & Yong Li & Pascal Schlosser & Mathias Gorski & Matthias Wuttke & Laurent F. Thomas & Humaira Rasheed & Bryce X. Rowan & Sarah E. Graham & Brett R. Vanderweff & Snehal B. Patil & Cass, 2021. "Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    11. Sonia Shah & Albert Henry & Carolina Roselli & Honghuang Lin & Garðar Sveinbjörnsson & Ghazaleh Fatemifar & Åsa K. Hedman & Jemma B. Wilk & Michael P. Morley & Mark D. Chaffin & Anna Helgadottir & Nie, 2020. "Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amil M. Shah & Peder L. Myhre & Victoria Arthur & Pranav Dorbala & Humaira Rasheed & Leo F. Buckley & Brian Claggett & Guning Liu & Jianzhong Ma & Ngoc Quynh Nguyen & Kunihiro Matsushita & Chiadi Ndum, 2024. "Large scale plasma proteomics identifies novel proteins and protein networks associated with heart failure development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Michael G. Levin & Noah L. Tsao & Pankhuri Singhal & Chang Liu & Ha My T. Vy & Ishan Paranjpe & Joshua D. Backman & Tiffany R. Bellomo & William P. Bone & Kiran J. Biddinger & Qin Hui & Ozan Dikilitas, 2022. "Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Diana Dunca & Sandesh Chopade & María Gordillo-Marañón & Aroon D. Hingorani & Karoline Kuchenbaecker & Chris Finan & Amand F. Schmidt, 2024. "Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Tzu-Ting Chen & Jaeyoung Kim & Max Lam & Yi-Fang Chuang & Yen-Ling Chiu & Shu-Chin Lin & Sang-Hyuk Jung & Beomsu Kim & Soyeon Kim & Chamlee Cho & Injeong Shim & Sanghyeon Park & Yeeun Ahn & Aysu Okbay, 2024. "Shared genetic architectures of educational attainment in East Asian and European populations," Nature Human Behaviour, Nature, vol. 8(3), pages 562-575, March.
    6. Bryan R. Gorman & Sun-Gou Ji & Michael Francis & Anoop K. Sendamarai & Yunling Shi & Poornima Devineni & Uma Saxena & Elizabeth Partan & Andrea K. DeVito & Jinyoung Byun & Younghun Han & Xiangjun Xiao, 2024. "Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Rosalie B. T. M. Sterenborg & Inga Steinbrenner & Yong Li & Melissa N. Bujnis & Tatsuhiko Naito & Eirini Marouli & Tessel E. Galesloot & Oladapo Babajide & Laura Andreasen & Arne Astrup & Bjørn Olav Å, 2024. "Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Yuandan Wei & Jianxin Zhen & Liang Hu & Yuqin Gu & Yanhong Liu & Xinxin Guo & Zijing Yang & Hao Zheng & Shiyao Cheng & Fengxiang Wei & Likuan Xiong & Siyang Liu, 2024. "Genome-wide association studies of thyroid-related hormones, dysfunction, and autoimmunity among 85,421 Chinese pregnancies," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shaan Khurshid & Julieta Lazarte & James P. Pirruccello & Lu-Chen Weng & Seung Hoan Choi & Amelia W. Hall & Xin Wang & Samuel F. Friedman & Victor Nauffal & Kiran J. Biddinger & Krishna G. Aragam & Pu, 2023. "Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. James P. Pirruccello & Paolo Achille & Seung Hoan Choi & Joel T. Rämö & Shaan Khurshid & Mahan Nekoui & Sean J. Jurgens & Victor Nauffal & Shinwan Kany & Kenney Ng & Samuel F. Friedman & Puneet Batra , 2024. "Deep learning of left atrial structure and function provides link to atrial fibrillation risk," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    19. Grace Png & Andrei Barysenka & Linda Repetto & Pau Navarro & Xia Shen & Maik Pietzner & Eleanor Wheeler & Nicholas J. Wareham & Claudia Langenberg & Emmanouil Tsafantakis & Maria Karaleftheri & George, 2021. "Mapping the serum proteome to neurological diseases using whole genome sequencing," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Jingning Zhang & Jianan Zhan & Jin Jin & Cheng Ma & Ruzhang Zhao & Jared O’Connell & Yunxuan Jiang & Bertram L. Koelsch & Haoyu Zhang & Nilanjan Chatterjee, 2024. "An ensemble penalized regression method for multi-ancestry polygenic risk prediction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39253-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.