IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1007081.html
   My bibliography  Save this article

Orienting the causal relationship between imprecisely measured traits using GWAS summary data

Author

Listed:
  • Gibran Hemani
  • Kate Tilling
  • George Davey Smith

Abstract

Inference about the causal structure that induces correlations between two traits can be achieved by combining genetic associations with a mediation-based approach, as is done in the causal inference test (CIT). However, we show that measurement error in the phenotypes can lead to the CIT inferring the wrong causal direction, and that increasing sample sizes has the adverse effect of increasing confidence in the wrong answer. This problem is likely to be general to other mediation-based approaches. Here we introduce an extension to Mendelian randomisation, a method that uses genetic associations in an instrumentation framework, that enables inference of the causal direction between traits, with some advantages. First, it can be performed using only summary level data from genome-wide association studies; second, it is less susceptible to bias in the presence of measurement error or unmeasured confounding. We apply the method to infer the causal direction between DNA methylation and gene expression levels. Our results demonstrate that, in general, DNA methylation is more likely to be the causal factor, but this result is highly susceptible to bias induced by systematic differences in measurement error between the platforms, and by horizontal pleiotropy. We emphasise that, where possible, implementing MR and appropriate sensitivity analyses alongside other approaches such as CIT is important to triangulate reliable conclusions about causality.Author summary: Understanding the causal relationships between pairs of traits is crucial for unravelling the causes of disease. To this end, results from genome-wide association studies are valuable because if a trait is known to be influenced by a genetic variant then this knowledge can be used to test the trait’s causal influences on other traits and diseases. Here we discuss scenarios where the nature of the genetic association with the causal trait can lead existing causal inference methods to give the wrong direction of causality. We introduce a new method that can be applied to summary level data and is potentially less susceptible to problems such as measurement error, and apply it to evaluate the causal relationships between DNA methylation levels and gene expression. While our results show that DNA methylation is more likely to be the causal factor, we point out that is it crucial to acknowledge that systematic differences in measurement error between the platforms could influence such conclusions.

Suggested Citation

  • Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
  • Handle: RePEc:plo:pgen00:1007081
    DOI: 10.1371/journal.pgen.1007081
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007081
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007081&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1007081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Stacey & Lingyan Chen & Paulina J. Stanczyk & Joanna M. M. Howson & Amy M. Mason & Stephen Burgess & Stephen MacDonald & Jonathan Langdown & Harriett McKinney & Kate Downes & Neda Farahi & James, 2022. "Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Grace Png & Andrei Barysenka & Linda Repetto & Pau Navarro & Xia Shen & Maik Pietzner & Eleanor Wheeler & Nicholas J. Wareham & Claudia Langenberg & Emmanouil Tsafantakis & Maria Karaleftheri & George, 2021. "Mapping the serum proteome to neurological diseases using whole genome sequencing," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Roxanna Korologou-Linden & Laxmi Bhatta & Ben M. Brumpton & Laura D. Howe & Louise A. C. Millard & Katarina Kolaric & Yoav Ben-Shlomo & Dylan M. Williams & George Davey Smith & Emma L. Anderson & Evie, 2022. "The causes and consequences of Alzheimer’s disease: phenome-wide evidence from Mendelian randomization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Anders Mälarstig & Felix Grassmann & Leo Dahl & Marios Dimitriou & Dianna McLeod & Marike Gabrielson & Karl Smith-Byrne & Cecilia E. Thomas & Tzu-Hsuan Huang & Simon K. G. Forsberg & Per Eriksson & Mi, 2023. "Evaluation of circulating plasma proteins in breast cancer using Mendelian randomisation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Molly Went & Amit Sud & Charlie Mills & Abi Hyde & Richard Culliford & Philip Law & Jayaram Vijayakrishnan & Ines Gockel & Carlo Maj & Johannes Schumacher & Claire Palles & Martin Kaiser & Richard Hou, 2024. "Phenome-wide Mendelian randomisation analysis of 378,142 cases reveals risk factors for eight common cancers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Eamon Fitzgerald & Mojun Shen & Hannah Ee Juen Yong & Zihan Wang & Irina Pokhvisneva & Sachin Patel & Nicholas O’Toole & Shiao-Yng Chan & Yap Seng Chong & Helen Chen & Peter D. Gluckman & Jerry Chan &, 2023. "Hofbauer cell function in the term placenta associates with adult cardiovascular and depressive outcomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Richard Howey & So-Youn Shin & Caroline Relton & George Davey Smith & Heather J Cordell, 2020. "Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data," PLOS Genetics, Public Library of Science, vol. 16(3), pages 1-35, March.
    11. Liza Darrous & Gibran Hemani & George Davey Smith & Zoltán Kutalik, 2024. "PheWAS-based clustering of Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Jennifer Sjaarda & Zoltán Kutalik, 2023. "Partner choice, confounding and trait convergence all contribute to phenotypic partner similarity," Nature Human Behaviour, Nature, vol. 7(5), pages 776-789, May.
    13. Eva-Maria Stauffer & Richard A. I. Bethlehem & Lena Dorfschmidt & Hyejung Won & Varun Warrier & Edward T. Bullmore, 2023. "The genetic relationships between brain structure and schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Lina Cai & Tomas Gonzales & Eleanor Wheeler & Nicola D. Kerrison & Felix R. Day & Claudia Langenberg & John R. B. Perry & Soren Brage & Nicholas J. Wareham, 2023. "Causal associations between cardiorespiratory fitness and type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
    16. Lingfei Wang & Tom Michoel, 2017. "Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-26, August.
    17. Thomas Battram & Tom R. Gaunt & Caroline L. Relton & Nicholas J. Timpson & Gibran Hemani, 2022. "A comparison of the genes and genesets identified by GWAS and EWAS of fifteen complex traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Yordi J. Vegte & Ruben N. Eppinga & M. Yldau Ende & Yanick P. Hagemeijer & Yuvaraj Mahendran & Elias Salfati & Albert V. Smith & Vanessa Y. Tan & Dan E. Arking & Ioanna Ntalla & Emil V. Appel & Claudi, 2023. "Genetic insights into resting heart rate and its role in cardiovascular disease," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Marina Vabistsevits & George Davey Smith & Tom G. Richardson & Rebecca C. Richmond & Weiva Sieh & Joseph H. Rothstein & Laurel A. Habel & Stacey E. Alexeeff & Bethan Lloyd-Lewis & Eleanor Sanderson, 2024. "Mammographic density mediates the protective effect of early-life body size on breast cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    21. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    22. Adrienne Tin & Pascal Schlosser & Pamela R. Matias-Garcia & Chris H. L. Thio & Roby Joehanes & Hongbo Liu & Zhi Yu & Antoine Weihs & Anselm Hoppmann & Franziska Grundner-Culemann & Josine L. Min & Vic, 2021. "Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    23. Yanjun Guo & Quanhong Liu & Zhilin Zheng & Mengxia Qing & Tianci Yao & Bin Wang & Min Zhou & Dongming Wang & Qinmei Ke & Jixuan Ma & Zhilei Shan & Weihong Chen, 2024. "Genetic association of inflammatory marker GlycA with lung function and respiratory diseases," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    24. Lucas A. Mavromatis & Daniel B. Rosoff & Andrew S. Bell & Jeesun Jung & Josephin Wagner & Falk W. Lohoff, 2023. "Multi-omic underpinnings of epigenetic aging and human longevity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    25. Jiwoo Lee & Sakari Jukarainen & Antti Karvanen & Padraig Dixon & Neil M. Davies & George Davey Smith & Pradeep Natarajan & Andrea Ganna, 2023. "Quantifying the causal impact of biological risk factors on healthcare costs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1007081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.