IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52236-2.html
   My bibliography  Save this article

Genome-wide association studies of thyroid-related hormones, dysfunction, and autoimmunity among 85,421 Chinese pregnancies

Author

Listed:
  • Yuandan Wei

    (Shenzhen
    Shenzhen)

  • Jianxin Zhen

    (Shenzhen)

  • Liang Hu

    (Shenzhen)

  • Yuqin Gu

    (Shenzhen)

  • Yanhong Liu

    (Shenzhen)

  • Xinxin Guo

    (Shenzhen)

  • Zijing Yang

    (Shenzhen)

  • Hao Zheng

    (Shenzhen)

  • Shiyao Cheng

    (Shenzhen)

  • Fengxiang Wei

    (Shenzhen)

  • Likuan Xiong

    (Shenzhen
    Shenzhen)

  • Siyang Liu

    (Shenzhen
    Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety)

Abstract

Maintaining normal thyroid function is crucial in pregnancy, yet thyroid dysfunction and the presence of thyroid peroxidase antibodies (TPOAb) affect 0.5% to 18% of pregnant women. Here, we conducted a genome-wide association study (GWAS) of eight thyroid traits, including two thyroid-related hormones, four thyroid dysfunctions, and two thyroid autoimmunity measurements among 85,421 Chinese pregnant women to investigate the genetic basis of thyroid function during pregnancy. Our study identified 176 genetic loci, including 125 previously unknown genome-wide associations. Joint epidemiological and Mendelian randomization analyses revealed significant associations between the gestational thyroid phenotypes and gestational complications, birth outcomes, and later-age health outcomes. Specifically, genetically elevated thyroid-stimulating hormone (TSH) levels during pregnancy correlated with lower glycemic levels, reduced blood pressure, and longer gestational duration. Additionally, TPOAb and thyroid functions during pregnancy share genetic correlations with later-age thyroid and cardiac disorders. These findings provide insights into the genetic determinants of thyroid traits during pregnancy, which may lead to new therapeutics, early pre-diagnosis and preventive strategies starting from early adulthood.

Suggested Citation

  • Yuandan Wei & Jianxin Zhen & Liang Hu & Yuqin Gu & Yanhong Liu & Xinxin Guo & Zijing Yang & Hao Zheng & Shiyao Cheng & Fengxiang Wei & Likuan Xiong & Siyang Liu, 2024. "Genome-wide association studies of thyroid-related hormones, dysfunction, and autoimmunity among 85,421 Chinese pregnancies," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52236-2
    DOI: 10.1038/s41467-024-52236-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52236-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52236-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander T. Williams & Jing Chen & Kayesha Coley & Chiara Batini & Abril Izquierdo & Richard Packer & Erik Abner & Stavroula Kanoni & David J. Shepherd & Robert C. Free & Edward J. Hollox & Nigel J. , 2023. "Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    3. Alexander Teumer & Layal Chaker & Stefan Groeneweg & Yong Li & Celia Di Munno & Caterina Barbieri & Ulla T. Schultheiss & Michela Traglia & Tarunveer S. Ahluwalia & Masato Akiyama & Emil Vincent R. Ap, 2018. "Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    4. Shujia Huang & Siyang Liu & Mingxi Huang & Jian-Rong He & Chengrui Wang & Tianyi Wang & Xiaotian Feng & Yashu Kuang & Jinhua Lu & Yuqin Gu & Xiaoyan Xia & Shanshan Lin & Wenhao Zhou & Qiaomei Fu & Hui, 2024. "The Born in Guangzhou Cohort Study enables generational genetic discoveries," Nature, Nature, vol. 626(7999), pages 565-573, February.
    5. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    6. Eleonora Porcu & Marco Medici & Giorgio Pistis & Claudia B Volpato & Scott G Wilson & Anne R Cappola & Steffan D Bos & Joris Deelen & Martin den Heijer & Rachel M Freathy & Jari Lahti & Chunyu Liu & L, 2013. "A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and Gender-Specific Differences in the Regulation of Thyroid Function," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-20, February.
    7. Wei Zhou & Ben Brumpton & Omer Kabil & Julius Gudmundsson & Gudmar Thorleifsson & Josh Weinstock & Matthew Zawistowski & Jonas B. Nielsen & Layal Chaker & Marco Medici & Alexander Teumer & Silvia Nait, 2020. "GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander T. Williams & Jing Chen & Kayesha Coley & Chiara Batini & Abril Izquierdo & Richard Packer & Erik Abner & Stavroula Kanoni & David J. Shepherd & Robert C. Free & Edward J. Hollox & Nigel J. , 2023. "Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Grace Png & Andrei Barysenka & Linda Repetto & Pau Navarro & Xia Shen & Maik Pietzner & Eleanor Wheeler & Nicholas J. Wareham & Claudia Langenberg & Emmanouil Tsafantakis & Maria Karaleftheri & George, 2021. "Mapping the serum proteome to neurological diseases using whole genome sequencing," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. David Stacey & Lingyan Chen & Paulina J. Stanczyk & Joanna M. M. Howson & Amy M. Mason & Stephen Burgess & Stephen MacDonald & Jonathan Langdown & Harriett McKinney & Kate Downes & Neda Farahi & James, 2022. "Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Molly Went & Laura Duran-Lozano & Gisli H. Halldorsson & Andrea Gunnell & Nerea Ugidos-Damboriena & Philip Law & Ludvig Ekdahl & Amit Sud & Gudmar Thorleifsson & Malte Thodberg & Thorunn Olafsdottir &, 2024. "Deciphering the genetics and mechanisms of predisposition to multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Abolfazl Doostparast Torshizi & Dongnhu T. Truong & Liping Hou & Bart Smets & Christopher D. Whelan & Shuwei Li, 2024. "Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Xueyan Wu & Hui Ying & Qianqian Yang & Qian Yang & Haoyu Liu & Yilan Ding & Huiling Zhao & Zhihe Chen & Ruizhi Zheng & Hong Lin & Shuangyuan Wang & Mian Li & Tiange Wang & Zhiyun Zhao & Min Xu & Yuhon, 2024. "Transcriptome-wide Mendelian randomization during CD4+ T cell activation reveals immune-related drug targets for cardiometabolic diseases," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Lucas A. Mavromatis & Daniel B. Rosoff & Andrew S. Bell & Jeesun Jung & Josephin Wagner & Falk W. Lohoff, 2023. "Multi-omic underpinnings of epigenetic aging and human longevity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Liza Darrous & Gibran Hemani & George Davey Smith & Zoltán Kutalik, 2024. "PheWAS-based clustering of Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Rosalie B. T. M. Sterenborg & Inga Steinbrenner & Yong Li & Melissa N. Bujnis & Tatsuhiko Naito & Eirini Marouli & Tessel E. Galesloot & Oladapo Babajide & Laura Andreasen & Arne Astrup & Bjørn Olav Å, 2024. "Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Molly Went & Amit Sud & Charlie Mills & Abi Hyde & Richard Culliford & Philip Law & Jayaram Vijayakrishnan & Ines Gockel & Carlo Maj & Johannes Schumacher & Claire Palles & Martin Kaiser & Richard Hou, 2024. "Phenome-wide Mendelian randomisation analysis of 378,142 cases reveals risk factors for eight common cancers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Julia Schröder & Vitalia Schüller & Andrea May & Christian Gerges & Mario Anders & Jessica Becker & Timo Hess & Nicole Kreuser & René Thieme & Kerstin U Ludwig & Tania Noder & Marino Venerito & Lothar, 2019. "Identification of loci of functional relevance to Barrett’s esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with gen," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    17. Lili Liu & Atlas Khan & Elena Sanchez-Rodriguez & Francesca Zanoni & Yifu Li & Nicholas Steers & Olivia Balderes & Junying Zhang & Priya Krithivasan & Robert A. LeDesma & Clara Fischman & Scott J. Heb, 2022. "Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Marta Alcalde-Herraiz & JunQing Xie & Danielle Newby & Clara Prats & Dipender Gill & María Gordillo-Marañón & Daniel Prieto-Alhambra & Martí Català & Albert Prats-Uribe, 2024. "Effect of genetically predicted sclerostin on cardiovascular biomarkers, risk factors, and disease outcomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Brittany L. Mitchell & Jake R. Saklatvala & Nick Dand & Fiona A. Hagenbeek & Xin Li & Josine L. Min & Laurent Thomas & Meike Bartels & Jouke Hottenga & Michelle K. Lupton & Dorret I. Boomsma & Xianjun, 2022. "Genome-wide association meta-analysis identifies 29 new acne susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52236-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.