IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39067-3.html
   My bibliography  Save this article

Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter

Author

Listed:
  • Yali Huang

    (Chinese Institute for Brain Research)

  • Peng-Hu Wei

    (Xuanwu Hospital Capital Medical University)

  • Longzhou Xu

    (Chinese Institute for Brain Research
    Beijing Normal University)

  • Desheng Chen

    (Xuanwu Hospital Capital Medical University)

  • Yanfeng Yang

    (Xuanwu Hospital Capital Medical University)

  • Wenkai Song

    (Chinese Institute for Brain Research)

  • Yangyang Yi

    (Chinese Institute for Brain Research)

  • Xiaoli Jia

    (Chinese Institute for Brain Research)

  • Guowei Wu

    (Chinese Institute for Brain Research)

  • Qingchen Fan

    (Chinese Institute for Brain Research)

  • Zaixu Cui

    (Chinese Institute for Brain Research)

  • Guoguang Zhao

    (Xuanwu Hospital Capital Medical University
    National Medical Center for Neurological Diseases
    Beijing Municipal Geriatric Medical Research Center)

Abstract

While functional MRI (fMRI) studies have mainly focused on gray matter, recent studies have consistently found that blood-oxygenation-level-dependent (BOLD) signals can be reliably detected in white matter, and functional connectivity (FC) has been organized into distributed networks in white matter. Nevertheless, it remains unclear whether this white matter FC reflects underlying electrophysiological synchronization. To address this question, we employ intracranial stereotactic-electroencephalography (SEEG) and resting-state fMRI data from a group of 16 patients with drug-resistant epilepsy. We find that BOLD FC is correlated with SEEG FC in white matter, and this result is consistent across a wide range of frequency bands for each participant. By including diffusion spectrum imaging data, we also find that white matter FC from both SEEG and fMRI are correlated with white matter structural connectivity, suggesting that anatomical fiber tracts underlie the functional synchronization in white matter. These results provide evidence for the electrophysiological and structural basis of white matter BOLD FC, which could be a potential biomarker for psychiatric and neurological disorders.

Suggested Citation

  • Yali Huang & Peng-Hu Wei & Longzhou Xu & Desheng Chen & Yanfeng Yang & Wenkai Song & Yangyang Yi & Xiaoli Jia & Guowei Wu & Qingchen Fan & Zaixu Cui & Guoguang Zhao, 2023. "Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39067-3
    DOI: 10.1038/s41467-023-39067-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39067-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39067-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muwei Li & Allen T. Newton & Adam W. Anderson & Zhaohua Ding & John C. Gore, 2019. "Characterization of the hemodynamic response function in white matter tracts for event-related fMRI," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Nikos K. Logothetis & Jon Pauls & Mark Augath & Torsten Trinath & Axel Oeltermann, 2001. "Neurophysiological investigation of the basis of the fMRI signal," Nature, Nature, vol. 412(6843), pages 150-157, July.
    3. Fang-Cheng Yeh & Timothy D Verstynen & Yibao Wang & Juan C Fernández-Miranda & Wen-Yih Isaac Tseng, 2013. "Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    3. Amrita Pal & Jennifer A Ogren & Ravi S Aysola & Rajesh Kumar & Luke A Henderson & Ronald M Harper & Paul M Macey, 2021. "Insular functional organization during handgrip in females and males with obstructive sleep apnea," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    4. Olsen, Carmen & Gold, Anna, 2018. "Future research directions at the intersection between cognitive neuroscience research and auditors’ professional skepticism," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 127-141.
    5. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    6. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    7. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Ani Eloyan & Shanshan Li & John Muschelli & Jim J Pekar & Stewart H Mostofsky & Brian S Caffo, 2014. "Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-13, February.
    9. Ai-Ling Hsu & Kun-Hsien Chou & Yi-Ping Chao & Hsin-Ya Fan & Changwei W Wu & Jyh-Horng Chen, 2016. "Physiological Contribution in Spontaneous Oscillations: An Approximate Quality-Assurance Index for Resting-State fMRI Signals," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    10. Kim, Sang-Yoon & Lim, Woochang, 2015. "Effect of small-world connectivity on fast sparsely synchronized cortical rhythms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 109-123.
    11. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    12. Sam Efromovich & Zibonele Valdez-Jasso, 2010. "Aggregated wavelet estimation and its application to ultra-fast fMRI," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 841-857.
    13. Fausto Caruana & Ivana Sartori & Giorgio Lo Russo & Pietro Avanzini, 2014. "Sequencing Biological and Physical Events Affects Specific Frequency Bands within the Human Premotor Cortex: An Intracerebral EEG Study," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    14. Elizabeth L. Johnson & Jack J. Lin & David King-Stephens & Peter B. Weber & Kenneth D. Laxer & Ignacio Saez & Fady Girgis & Mark D’Esposito & Robert T. Knight & David Badre, 2023. "A rapid theta network mechanism for flexible information encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Pahor, Anja & Jaušovec, Norbert, 2017. "Multifaceted pattern of neural efficiency in working memory capacity," Intelligence, Elsevier, vol. 65(C), pages 23-34.
    16. Michael Seiler & Eric Walden, 2015. "A Neurological Explanation of Strategic Mortgage Default," The Journal of Real Estate Finance and Economics, Springer, vol. 51(2), pages 215-230, August.
    17. Cian McCafferty & Benjamin F. Gruenbaum & Renee Tung & Jing-Jing Li & Xinyuan Zheng & Peter Salvino & Peter Vincent & Zachary Kratochvil & Jun Hwan Ryu & Aya Khalaf & Kohl Swift & Rashid Akbari & Wasi, 2023. "Decreased but diverse activity of cortical and thalamic neurons in consciousness-impairing rodent absence seizures," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Pedro G. Vieira & Matthew R. Krause & Christopher C. Pack, 2024. "Temporal interference stimulation disrupts spike timing in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    20. Irene Neuner & Wolfram Kawohl & Jorge Arrubla & Tracy Warbrick & Konrad Hitz & Christine Wyss & Frank Boers & N Jon Shah, 2014. "Cortical Response Variation with Different Sound Pressure Levels: A Combined Event-Related Potentials and fMRI Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39067-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.